J-STAGE Home  >  Publications - Top  > Bibliographic Information

IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Vol. E98.A (2015) No. 8 pp. 1820-1828

Language:

http://doi.org/10.1587/transfun.E98.A.1820

Regular Section

This paper proposes a Poisson denoising method with a union of directional lapped orthogonal transforms (DirLOTs). DirLOTs are 2-D non-separable lapped orthogonal transforms with directional characteristics under the fixed-critically-subsampling, overlapping, orthonormal, symmetric, real-valued and compact-support property. In this work, DirLOTs are used to generate symmetric orthogonal discrete wavelet transforms and then a redundant dictionary as a union of unitary transforms. The multiple directional property is suitable for representing natural images which contain diagonal textures and edges. Multiple DirLOTs can overcome a disadvantage of separable wavelets in representing diagonal components. In addition to this feature, multiple DirLOTs make transform-based denoising performance better through the redundant representation. Experimental results show that the combination of the variance stabilizing transformation (VST), Stein's unbiased risk estimator-linear expansion of threshold (SURE-LET) approach and multiple DirLOTs is able to significantly improve the denoising performance.

Copyright © 2015 The Institute of Electronics, Information and Communication Engineers

Share this Article