IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

On the list decodability of matrix codes with different metrics
Yang DINGYuting QIUHongxi TONG
著者情報
ジャーナル 認証あり 早期公開

論文ID: 2021EAL2015

この記事には本公開記事があります。
詳細
抄録

One of the main problems in list decoding is to determine the tradeoff between the list decoding radius and the rate of the codes w.r.t. a given metric. In this paper, we first describe a "stronger-weaker" relationship between two distinct metrics of the same code, then we show that the list decodability of the stronger metric can be deduced from the weaker metric directly. In particular, when we focus on matrix codes, we can obtain list decodability of matrix code w.r.t. the cover metric from the Hamming metric and the rank metric. Moreover, we deduce a Johnson-like bound of the list decoding radius for cover metric codes, which improved the result of [20]. In addition, the condition for a metric that whether the list decoding radius w.r.t. this metric and the rate are bounded by the Singleton bound is presented.

著者関連情報
© 2021 The Institute of Electronics, Information and Communication Engineers
feedback
Top