Tribology Online
Online ISSN : 1881-2198
ISSN-L : 1881-218X
Article
On the Estimation of the Dynamic Leak-Tightness of Shaft Seals with Hydrodynamic Sealing Aids through a Hydrodynamic Parameter
Nino Dakov Simon FeldmethMario StollFrank Bauer
著者情報
ジャーナル オープンアクセス

2019 年 14 巻 5 号 p. 359-366

詳細
抄録

Lip seals made of PTFE compound are used due to their high thermal and chemical stability for the sealing of shaft interfaces in housings. For a better dynamic leak-tightness hydrodynamic sealing aids are manufactured on the sealing lip. Thus a PTFE lip seal is capable of back-pumping fluid from the air to the fluid side. The pumping rate serves as an important parameter for the dynamic leaktightness of seals with a unidirectional sealing aid design. The correlation of pumping rate and dynamic leak-tightness for bi-directional sealing aid designs is deficient. A new hydrodynamic parameter is introduced to assess the dynamic leak-tightness of a sealing aid design. The so called pressure drag is the force resulting from the integral of the hydrodynamic pressure over the surface of the sealing aid. A hypothesis is proposed, stating that in order to guarantee a dynamically leak-tight shaft seal, two conditions should be satisfied. First, the pumping rate should be greater than zero. Second, the axial pressure drag should be directed entirely towards the fluid side. The hypothesis is verified on different types of unidirectional and bi-directional sealing aid design. In conclusion the axial pressure drag is shown to be a suitable performance parameter for the sealing aid design.

著者関連情報
© 2019 by Japanese Society of Tribologists

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top