Biological Sciences in Space
Online ISSN : 1349-967X
Print ISSN : 0914-9201
ISSN-L : 0914-9201
Volume 17, Issue 2
Displaying 1-5 of 5 articles from this issue
  • Miyo T. Morita, Masao Tasaka
    2003Volume 17Issue 2 Pages 108-115
    Published: 2003
    Released on J-STAGE: January 31, 2006
    JOURNAL FREE ACCESS
    In higher plants, some organs such as roots, hypocotyls, and stems, can sense the direction of gravity to regulate their orientation. Gravitropic response is composed of four steps; 1. gravity sensing and conversion of physical stimuli to biochemical signals, 2. intracellular signal transduction in gravity sensing cells, 3. signal transmitting to responding tissues, 4. differential growth of organs. Here we focus on the former two steps. Recent studies using modern technique have gradually unveiled early events and mechanism of gravitropic response. Genetic approach provided evidences that strongly support the classical theory for gravity sensing (step 1). Computational analysis suggested the existence of another gravity sensing mechanism in roots. Spatial and temporal ion imaging in living organs in real time provided information on step2. In addition, reverse genetic approach suggested asymmetrical intracellular distribution of auxin transpoter is a possible link between step 2 and 3. However, molecular basis of the signaling mechanism remains unknown. We believe extensive molecular genetic approach combined with recent techniques cited here shed the light to this ambiguous area of research.
    Download PDF (595K)
  • Relevance to growth and development, and auxin polar transport in etiolated pea seedlings
    Junichi Ueda, Kensuke Miyamoto
    2003Volume 17Issue 2 Pages 116-125
    Published: 2003
    Released on J-STAGE: January 31, 2006
    JOURNAL FREE ACCESS
    We review the graviresponse under true and simulated microgravity conditions on a clinostat in higher plants, and its regulation in molecular bases, especially on the aspect of auxin polar transport in etiolated pea (Pisum sativum L. cv. Alaska) seedlings which were the plant materials subjected to STS-95 space experiments. True and simulated microgravity conditions substantially affected growth and development in etiolated pea seedlings, especially the direction of growth of stems and roots, resulting in automophosis. In etiolated pea seedlings grown in space, epicotyls were the most oriented toward the direction far from the cotyledons, and roots grew toward the aerial space of Plant Growth Chamber. Automorphosis observed in space were well simulated by a clinorotation on a 3-dimensional clinostat and also phenocopied by the application of auxin polar transport inhibitors of 2,3,5-triiodobenzoic acid, N-(1-naphtyl)phthalamic acid and 9-hydroxyfluorene-9-carboxylic acid. Judging from the results described above together with the fact that activities of auxin polar transport in epicotyls of etiolated pea seedlings grown in space substantially were reduced, auxin polar transport seems to be closely related to automorphosis. Strenuous efforts to learn in molecular levels how gravity contributes to the auxin polar transport in etiolated pea epicotyls resulted in successful identification of PsPIN2 and PsAUX1 genes located in plasma membrane which products are considered to be putative efflux and influx carriers of auxin, respectively. Based on the results of expression of PsPIN2 and PsAUX1 genes under various gravistimulations, a possible role of PsPIN2 and PsAUX1 genes for auxin polar transport in etiolated pea seedlings will be discussed.
    Download PDF (606K)
  • Nobuharu Fujii, Hideyuki Takahashi
    2003Volume 17Issue 2 Pages 126-134
    Published: 2003
    Released on J-STAGE: January 31, 2006
    JOURNAL FREE ACCESS
    Gravity regulates peg formation because cucumber seedlings grown in a horizontal position develop a peg on the lower side of the transition zone (TR zone) but not on the upper side. Studies on peg formation have suggested the regulation of peg formation by gravity as follows. Cucumber seedlings potentially develop a peg on both the lower and upper sides of the TR zone. The development of the peg on upper side of the TR zone is suppressed in response to gravity. A phytohormone, auxin, induces peg formation. Upon gravistimulation the auxin concentration on the upper side of the TR zone is reduced to a level below the threshold value necessary for peg formation. The unequally distributed auxin across TR zone is caused by a change in accumulation of auxin influx carrier (CsAUX1) protein and auxin efflux carrier (CsPIN1) protein in response to gravity. In addition, TR zone before peg initiation expresses both CsARF2 (putative activator of auxin response factor) and CsIAA1 (putative repressor of auxin-inducible gene expression), by which TR zone could respond the auxin gradient regulated by gravity.
    Download PDF (1113K)
  • Function of anti-gravitational polysaccharides
    Takayuki Hoson, Kazuyuki Wakabayashi, Kouichi Soga
    2003Volume 17Issue 2 Pages 135-143
    Published: 2003
    Released on J-STAGE: January 31, 2006
    JOURNAL FREE ACCESS
    The involvement of anti-gravitational polysaccharides in gravity resistance, one of two major gravity responses in plants, was discussed. In dicotyledons, xyloglucans are the only cell wall polysaccharides, whose level, molecular size, and metabolic turnover were modified under both hypergravity and microgravity conditions, suggesting that xyloglucans act as anti-gravitational polysaccharides. In monocotyledonous Poaceae, (1→3),(1→4)-b-glucans, instead of xyloglucans, were shown to play a role as anti-gravitational polysaccharides. These polysaccharides are also involved in plant responses to other environmental factors, such as light and temperature, and to some phytohormones, such as auxin and ethylene. Thus, the type of anti-gravitational polysaccharides is different between dicotyledons and Poaceae, but such polysaccharides are universally involved in plant responses to environmental and hormonal signals. In gravity resistance, the gravity signal may be received by the plasma membrane mechanoreceptors, transformed and transduced within each cell, and then may modify the processes of synthesis and secretion of the anti-gravitational polysaccharides and the cell wall enzymes responsible for their degradation, as well as the apoplastic pH, leading to the cell wall reinforcement. A series of events inducing gravity resistance are quite independent of those leading to gravitropism.
    Download PDF (556K)
  • Teruko Nakamura
    2003Volume 17Issue 2 Pages 144-148
    Published: 2003
    Released on J-STAGE: January 31, 2006
    JOURNAL FREE ACCESS
    Using the weeping branch of Japanese flowering cherry tree and its woody stem of the seedling grown under simulated microgravity condition by three dimensional clinostat, it was elucidated that the morphogenesis of its secondary xylem supporting the plant itself to grow upward is seriously controlled by gravity on earth with a sedimentable amyloplast as its sensor. Space experiment of woody plant is expected to elucidate such problem.
    Download PDF (866K)
feedback
Top