Breeding Science
Online ISSN : 1347-3735
Print ISSN : 1344-7610
ISSN-L : 1344-7610
Volume 64, Issue 2
Displaying 1-11 of 11 articles from this issue
Review
  • Ken Naito, Yuki Monden, Kanako Yasuda, Hiroki Saito, Yutaka Okumoto
    2014 Volume 64 Issue 2 Pages 109-114
    Published: 2014
    Released on J-STAGE: July 19, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Though transposable elements (TEs) have been considered as an efficient source of evolution, it has never been possible to test this hypothesis because most of TE insertions had occurred millions of years ago, or because currently active TEs have very few copies in a host genome. However, mPing, the first active DNA transposon in rice, was revealed to hold a key to answer this question. mPing has attained high copy numbers and still retained very high activity in a traditional rice strain, which enabled direct observation of behavior and impact of a bursting TE. A comprehensive analysis of mPing insertion sites has revealed it avoids exons but prefers promoter regions and thus moderately affects transcription of neighboring genes. Some of the mPing insertions have introduced possibly useful expression profile to adjacent genes that indicated TE’s potential in de novo formation of gene regulatory network.
Research Papers
  • Kenta Ootsuka, Ikuya Takahashi, Katsunori Tanaka, Tomio Itani, Hiroaki ...
    2014 Volume 64 Issue 2 Pages 115-124
    Published: 2014
    Released on J-STAGE: July 19, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material
    Rice fragrance is an important characteristic for Southeast Asian consumers, and fragrant landraces from Japan were first recorded in the 17th century. Principal component analysis clearly showed that Japanese fragrant landraces were genetically different from non-Japanese fragrant landraces. Japanese fragrant landraces were composed of six clades, none of which carried the most common fragrance mutation, an 8-bp deletion in exon 7 of Badh2. Fragrant landraces comprised two major groups carrying different Badh2 mutations. One group carried a known SNP at exon13 and the other a SNP at the exon1-intron1 junction as splicing donor site. The latter was considered to be a potential splicing mutant group as a novel allele at Badh2. Heterozygosity (He) scores in the two fragrant groups were not significantly different from non-fragrant landraces and modern cultivars. However, lower He scores were found around the Badh2 locus in the two groups. The potential splicing mutant group showed a more extended haplotype than the E13 SNP group. A likely causal factor responsible for loss of function is a novel splicing mutation allele that may have been generated quite recently. The fragrance allele has dispersed as a result of out-crossing under local environmental conditions.
  • Guizhen Gao, Jun Li, Hao Li, Feng Li, Kun Xu, Guixin Yan, Biyun Chen, ...
    2014 Volume 64 Issue 2 Pages 125-133
    Published: 2014
    Released on J-STAGE: July 19, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material
    DNA methylation is responsive to various biotic and abiotic stresses. Heat stress is a serious threat to crop growth and development worldwide. Heat stress results in an array of morphological, physiological and biochemical changes in plants. The relationship between DNA methylation and heat stress in crops is relatively unknown. We investigated the differences in methylation levels and changes in the cytosine methylation patterns in seedlings of two rapeseed genotypes (heat-sensitive and heat-tolerant) under heat stress. Our results revealed that the methylation levels were different between a heat-tolerant genotype and a heat-sensitive one under control conditions. Under heat treatment, methylation increased more in the heat-sensitive genotype than in the heat-tolerant genotype. More DNA demethylation events occurred in the heat-tolerant genotype, while more DNA methylation occurred in the heat-sensitive genotype. A large and diverse set of genes were affected by heat stress via cytosine methylation changes, suggesting that these genes likely play important roles in the response and adaption to heat stress in Brassica napus L. This study indicated that the changes in DNA methylation differed between heat-tolerant and heat-sensitive genotypes of B. napus in response to heat stress, which further illuminates the molecular mechanisms of the adaption to heat stress in B. napus.
  • Hiroaki Maeda, Takuya Yamaguchi, Motoyasu Omoteno, Takeshi Takarada, K ...
    2014 Volume 64 Issue 2 Pages 134-141
    Published: 2014
    Released on J-STAGE: July 19, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material
    Rice (Oryza sativa L.) can produce black grains as well as white. In black rice, the pericarp of the grain accumulates anthocyanin, which has antioxidant activity and is beneficial to human health. We developed a black rice introgression line in the genetic background of Oryza sativa L. ‘Koshihikari’, which is a leading variety in Japan. We used Oryza sativa L. ‘Hong Xie Nuo’ as the donor parent and backcrossed with ‘Koshihikari’ four times, resulting in a near isogenic line (NIL) for black grains. A whole genome survey of the introgression line using DNA markers suggested that three regions, on chromosomes 1, 3 and 4 are associated with black pigmentation. The locus on chromosome 3 has not been identified previously. A mapping analysis with 546 F2 plants derived from a cross between the black rice NIL and ‘Koshihikari’ was evaluated. The results indicated that all three loci are essential for black pigmentation. We named these loci Kala1, Kala3 and Kala4. The black rice NIL was evaluated for eating quality and general agronomic traits. The eating quality was greatly superior to that of ‘Okunomurasaki’, an existing black rice variety. The isogenicity of the black rice NIL to ‘Koshihikari’ was very high.
  • Tran Thi Thu Hoai, Hiroaki Matsusaka, Yoshiko Toyosawa, Tran Danh Suu, ...
    2014 Volume 64 Issue 2 Pages 142-148
    Published: 2014
    Released on J-STAGE: July 19, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Amylose content is one of the most important factors influencing the physical and chemical properties of starch in rice. Analysis of 352 Vietnamese rice cultivars revealed a wide range of variation in apparent amylose content and the expression level of granule-bound starch synthase. On the basis of single-nucleotide polymorphisms (SNP) at the splicing donor site of the first intron and in the coding region of the granule-bound starch synthase I gene, Waxy gene, alleles can be classified into seven groups that reflect differences in apparent amylose content. The very low and low apparent amylose content levels were tightly associated with a G to T in the first intron whereas intermediate and high amylose was associated with a T genotype at SNP in exon 10. The correlation between the combination of T genotype at SNP in the first intron, C in exon 6, or C in exon 10 was predominant among low amylose rice varieties. Our analysis confirmed the existence of Wxop allele in Vietnamese rice germplasm. The results of this study suggest that the low amylose properties of Vietnamese local rice germplasm are attributable to spontaneous mutations at exons, and not at the splicing donor site.
  • Qiu Shi Wang, Xi Zhang, Cheng Yu Li, Zhi Yong Liu, Hui Feng
    2014 Volume 64 Issue 2 Pages 149-155
    Published: 2014
    Released on J-STAGE: July 19, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    To produce hybrid seeds of Wutacai (Brassica campestris L. ssp. chinensis (L.) Makino var. rosularis Tsen et Lee), a “directional transfer program” was designed to breed the multiple-allele male sterile line of Wutacai. A multiple-allele male sterile line of Naibaicai (Brassica campestris L. ssp. chinensis L., S01) was used as the male sterile resource, and an inbred line of Wutacai (WT01) was used as the target line. Recurrent backcrossing was employed to transfer the male sterility and other botanical traits simultaneously, while the genotype was identified through test crossing. The male sterility was successfully transferred from S01 to WT01. A new male sterile line, GMS-3, with similar botanical traits to WT01, was bred. Four hybrid combinations were generated with GMS-3 as the female parent. One hybrid (C1) that contained the most desirable traits was developed from the new male sterile line.
  • Xiao-Yu Zhang, Xiao-Xia Yu, Zhuo Yu, Yu-Feng Xue, Li-Peng Qi
    2014 Volume 64 Issue 2 Pages 156-163
    Published: 2014
    Released on J-STAGE: July 19, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    A two-step method was developed to evaluate potato resistance to black scurf caused by Rhizoctonia solani. Tuber piece inoculum was first conducted in the laboratory, which was also first reported in this study. After inoculation with pathogen discs and culture for 48 h, the necrotic spots on the inoculated potato pieces were generated and measured by the crossing method. Further evaluation was conducted through field experiments using a wheat bran inoculum method. The wheat bran inoculum was placed into the pit dispersedly and surrounded seed tubers. Each cultivar or line was subjected to five treatments of 0-, 2-, 3-, 4-, and 5-g soil inoculum. The results showed that 2–4 g of wheat bran inoculum was the optimum for identifying tuber black scurf resistance. The laboratory scores positively correlated with the incidence and severity of black scurf in the field. According to the results in the laboratory, relatively resistant cultivars could be selected for further estimation of tuber black scurf resistance in field experiments. It is a practical and effective screening method for rapid identification of resistant potato germplasm, which can reduce workload in the field, shorten time required for identification.
  • Young-Jun Mo, Ji-Ung Jeung, Woon-Chul Shin, Ki-Young Kim, Changrong Ye ...
    2014 Volume 64 Issue 2 Pages 164-175
    Published: 2014
    Released on J-STAGE: July 19, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material
    Influences of allelic variations in starch synthesis-related genes (SSRGs) on rice grain quality were examined. A total of 187 nonglutinous Korean rice varieties, consisting of 170 Japonica and 17 Tongil-type varieties, were grown in the field and in two greenhouse conditions. The percentages of head rice and chalky grains, amylose content, alkali digestion value, and rapid visco-analysis characteristics were evaluated in the three different environments. Among the 10 previously reported SSRG markers used in this study, seven were polymorphic, and four of those showed subspecies-specific allele distributions. Six out of the seven polymorphic SSRG markers were significantly associated with at least one grain quality trait (R2 > 0.1) across the three different environments. However, the association level and significance were markedly lower when the analysis was repeated using only the 170 Japonica varieties. Similarly, the significant associations between SSRG allelic variations and changes in grain quality traits under increased temperature were largely attributable to the biased allele frequency between the two subpopulations. Our results suggest that within Korean Japonica varieties, these 10 major SSRG loci have been highly fixed during breeding history and variations in grain quality traits might be influenced by other genetic factors.
  • Shinji Kikuchi, Miwako Iwasuna, Aya Kobori, Yasunori Tsutaki, Akihiro ...
    2014 Volume 64 Issue 2 Pages 176-182
    Published: 2014
    Released on J-STAGE: July 19, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    As the fruits of loquat (Eriobotrya japonica, 2n = 2x = 34) carry large seeds, the breeding of seedless loquat has long been a goal. The recent creation of triploid cultivars (2n = 3x = 51) and the application of gibberellins allow commercial production of seedless loquat, but the possibility of seed formation in triploid loquats has not been carefully investigated. Through crossing experiments and cytological observations of meiosis and pollen tube growth, we found that the triploid line 3N-N28 was essentially self-sterile, but developed seeds on pollination with pollen from diploid cultivars at rates of up to 5.5%. Almost half of the seedlings survived to 5 months, and carried diploid (2n = 34), tetraploid (2n = 68), or aneuploid chromosome numbers. Our results suggest that triploid loquat cultivars might retain the risk of seed formation. Protection from pollination by diploid cultivars or the development of new triploid cultivars will be necessary to ensure the production of seedless loquat fruits.
  • Akiko Kawasaki-Tanaka, Yoshimichi Fukuta
    2014 Volume 64 Issue 2 Pages 183-192
    Published: 2014
    Released on J-STAGE: July 19, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material
    A total of 324 Japanese rice accessions, including landrace, improved, and weedy types were used to 1) investigate genetic variations in blast resistance to standard differential isolates, and 2) across the genome using polymorphism data on 64 SSR markers. From the polymorphism data, the accessions were classified into two clusters,. Accessions from irrigated lowland areas were included mainly in cluster I, and upland and Indica types were mainly in cluster II. The accessions were classified into three resistance subgroups, A2, B1 and B2, based on the reaction patterns to blast isolates. The accessions in A2 were postulated to have at least two resistance genes Pish and Pik-s, whereas those in B1 had various combinations of the resistance genes Pish, Pia, Pii, Pi3, Pi5(t), and Pik alleles. The B2 accessions were resistant to almost all isolates, and many accessions of cluster II were included, and had Pish, Pia, Pii, Pi3, Pi5(t), certain Pik, Piz and Pita alleles, and unknown genes. The frequencies of accessions of B1 originating in Hokkaido, and those of B2 originating in the Kanto and Tohoku regions were remarkably higher than in the other regions.
Note
  • Ronggai Li, Yucui Han, Peng Lv, Ruiheng Du, Guoqing Liu
    2014 Volume 64 Issue 2 Pages 193-198
    Published: 2014
    Released on J-STAGE: July 19, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material
    The presence and morphology of plant brace roots are important root architecture traits. Brace roots contribute significantly to effective anchorage and water and nutrient uptake during late growth and development, and more importantly, have a substantial influence on grain yield under soil flooding or water limited conditions. However, little is known about the genetic mechanisms that underlie brace root traits. In this study, quantitative trait loci (QTLs) for presence of brace roots from the sorghum landrace “Sansui” were mapped and associated molecular markers were identified. A linkage map was constructed with 109 assigned simple sequence repeat markers using a F2 mapping population derived from the cross Sansui/Jiliang 2. Two QTLs associated with presence of brace roots were localized on chromosomes 6 and 7. The major QTL on chromosome 7 between markers Dsenhsbm7 and Xcup 70 explained about 52.5% of the phenotypic variation, and the minor QTL on chromosome 6 was flanked by Xtxp127 and Xtxp6 and accounted for 7.0% of phenotypic variation. These results will provide information for the improvement of sorghum root architecture associated with brace roots.
feedback
Top