Breeding Science
Online ISSN : 1347-3735
Print ISSN : 1344-7610
ISSN-L : 1344-7610
Volume 64 , Issue 1
Showing 1-12 articles out of 12 articles from the selected issue
Editorial
Reviews
  • Ashutosh Sharma, Xiaonan Li, Yong Pyo Lim
    2014 Volume 64 Issue 1 Pages 3-13
    Published: 2014
    Released: June 11, 2014
    JOURNALS FREE ACCESS FULL-TEXT HTML
    The family Brassicaceae is one of the major groups of the plant kingdom and comprises diverse species of great economic, agronomic and scientific importance, including the model plant Arabidopsis. The sequencing of the Arabidopsis genome has revolutionized our knowledge in the field of plant biology and provides a foundation in genomics and comparative biology. Genomic resources have been utilized in Brassica for diversity analyses, construction of genetic maps and identification of agronomic traits. In Brassicaceae, comparative sequence analysis across the species has been utilized to understand genome structure, evolution and the detection of conserved genomic segments. In this review, we focus on the progress made in genetic resource development, genome sequencing and comparative mapping in Brassica and related species. The utilization of genomic resources and next-generation sequencing approaches in improvement of Brassica crops is also discussed.
  • Yukio Kaneko, Sang Woo Bang
    2014 Volume 64 Issue 1 Pages 14-22
    Published: 2014
    Released: June 11, 2014
    JOURNALS FREE ACCESS FULL-TEXT HTML
    In Brassicaceae crop breeding programs, wild relatives have been evaluated as genetic resources to develop new cultivars with biotic and abiotic stress resistance. This has become necessary because of the diversification of ecotypes of diseases and pests, changing food preferences, advances in production technology, the use of new approaches such as in vitro breeding programs, and the need for economical production of F1 seed. To produce potential new cultivars, interspecific and intergeneric hybridizations have been performed between cultivated species and between cultivated species and their wild relatives. Furthermore, interspecific and intergeneric hybrids have been successfully produced using embryo rescue techniques. In this paper, we review the interspecific and intergeneric incompatibilities between Brassicaceae crops and their wild relatives, and the production, characterization, and improvement of synthetic amphidiploid lines, alien gene introgression lines, alloplasmic lines, monosomic alien chromosome addition lines, and monosomic alien chromosome substitution lines. The goal is to provide useful materials to support practical breeding strategies and to study the genetic effects of individual chromosomes on plant traits, the number of genes that control a trait, their linkage relationships, and genetic improvement in Brassicaceae crops.
  • Hiroyasu Kitashiba, June B. Nasrallah
    2014 Volume 64 Issue 1 Pages 23-37
    Published: 2014
    Released: June 11, 2014
    JOURNALS FREE ACCESS FULL-TEXT HTML
    Most wild plants and some crops of the Brassicaceae express self-incompatibility, which is a mechanism that allows stigmas to recognize and discriminate against “self” pollen, thus preventing self-fertilization and inbreeding. Self-incompatibility in this family is controlled by a single S locus containing two multiallelic genes that encode the stigma-expressed S-locus receptor kinase and its pollen coat-localized ligand, the S-locus cysteine-rich protein. Physical interaction between receptor and ligand encoded in the same S locus activates the receptor and triggers a signaling cascade that results in inhibition of “self” pollen. Sequence information for many S-locus haplotypes in Brassica species has spurred studies of dominance relationships between S haplotypes and of S-locus structure, as well as the development of methods for S genotyping. Furthermore, molecular genetic studies have begun to identify genes that encode putative components of the self-incompatibility signaling pathway. In parallel, standard genetic analysis and QTL analysis of the poorly understood interspecific incompatibility phenomenon have been initiated to identify genes responsible for the inhibition of pollen from other species by the stigma. Herewith, we review recent studies of self-incompatibility and interspecific incompatibility, and we propose a model in which a universal pollen-inhibition pathway is shared by these two incompatibility systems.
  • Hiroshi Yamagishi, Shripad R. Bhat
    2014 Volume 64 Issue 1 Pages 38-47
    Published: 2014
    Released: June 11, 2014
    JOURNALS FREE ACCESS FULL-TEXT HTML
    Brassicaceae crops display strong hybrid vigor, and have long been subject to F1 hybrid breeding. Because the most reliable system of F1 seed production is based on cytoplasmic male sterility (CMS), various types of CMS have been developed and adopted in practice to breed Brassicaceae oil seed and vegetable crops. CMS is a maternally inherited trait encoded in the mitochondrial genome, and the male sterile phenotype arises as a result of interaction of a mitochondrial CMS gene and a nuclear fertility restoring (Rf) gene. Therefore, CMS has been intensively investigated for gaining basic insights into molecular aspects of nuclear-mitochondrial genome interactions and for practical applications in plant breeding. Several CMS genes have been identified by molecular genetic studies, including Ogura CMS from Japanese radish, which is the most extensively studied and most widely used. In this review, we discuss Ogura CMS, and other CMS systems, and the causal mitochondrial genes for CMS. Studies on nuclear Rf genes and the cytoplasmic effects of alien cytoplasm on general crop performance are also reviewed. Finally, some of the unresolved questions about CMS are highlighted.
  • Masahiko Ishida, Masakazu Hara, Nobuko Fukino, Tomohiro Kakizaki, Yasu ...
    2014 Volume 64 Issue 1 Pages 48-59
    Published: 2014
    Released: June 11, 2014
    JOURNALS FREE ACCESS FULL-TEXT HTML
    Unique secondary metabolites, glucosinolates (S-glucopyranosyl thiohydroximates), are naturally occurring S-linked glucosides found mainly in Brassicaceae plants. They are enzymatically hydrolyzed to produce sulfate ions, D-glucose, and characteristic degradation products such as isothiocyanates. The functions of glucosinolates in the plants remain unclear, but isothiocyanates possessing a pungent or irritating taste and odor might be associated with plant defense from microbes. Isothiocyanates have been studied extensively in experimental in vitro and in vivo carcinogenesis models for their cancer chemopreventive properties. The beneficial isothiocyanates, glucosinolates that are functional for supporting human health, have received attention from many scientists studying plant breeding, plant physiology, plant genetics, and food functionality. This review presents a summary of recent topics related with glucosinolates in the Brassica family, along with a summary of the chemicals, metabolism, and genes of glucosinolates in Brassicaceae. The bioavailabilities of isothiocyanates from certain functional glucosinolates and the importance of breeding will be described with emphasis on glucosinolates.
  • Xuekun Zhang, Guangyuan Lu, Weihua Long, Xiling Zou, Feng Li, Takeshi ...
    2014 Volume 64 Issue 1 Pages 60-73
    Published: 2014
    Released: June 11, 2014
    JOURNALS FREE ACCESS FULL-TEXT HTML
    Water deficit imposed by either drought or salinity brings about severe growth retardation and yield loss of crops. Since Brassica crops are important contributors to total oilseed production, it is urgently needed to develop tolerant cultivars to ensure yields under such adverse conditions. There are various physiochemical mechanisms for dealing with drought and salinity in plants at different developmental stages. Accordingly, different indicators of tolerance to drought or salinity at the germination, seedling, flowering and mature stages have been developed and used for germplasm screening and selection in breeding practices. Classical genetic and modern genomic approaches coupled with precise phenotyping have boosted the unravelling of genes and metabolic pathways conferring drought or salt tolerance in crops. QTL mapping of drought and salt tolerance has provided several dozen target QTLs in Brassica and the closely related Arabidopsis. Many drought- or salt-tolerant genes have also been isolated, some of which have been confirmed to have great potential for genetic improvement of plant tolerance. It has been suggested that molecular breeding approaches, such as marker-assisted selection and gene transformation, that will enhance oil product security under a changing climate be integrated in the development of drought- and salt-tolerant Brassica crops.
  • Mai Tsuda, Ryo Ohsawa, Yutaka Tabei
    2014 Volume 64 Issue 1 Pages 74-82
    Published: 2014
    Released: June 11, 2014
    JOURNALS FREE ACCESS FULL-TEXT HTML
    The impact of genetically modified canola (Brassica napus) on biodiversity has been examined since its initial stage of commercialization. Various research groups have extensively investigated crossability and introgression among species of Brassicaceae. B. rapa and B. juncea are ranked first and second as the recipients of cross-pollination and introgression from B. napus, respectively. Crossability between B. napus and B. rapa has been examined, specifically in terms of introgression from B. napus to B. rapa, which is mainly considered a weed in America and European countries. On the other hand, knowledge on introgression from B. napus to B. juncea is insufficient, although B. juncea is recognized as the main Brassicaceae weed species in Asia. It is therefore essential to gather information regarding the direct introgression of B. napus into B. juncea and indirect introgression of B. napus into other species of Brassicaceae through B. juncea to evaluate the influence of genetically modified canola on biodiversity. We review information on crossability and introgression between B. juncea and other related Brassicaseae in this report.
Research Papers
  • Raymond Cowley, David J. Luckett, Gavin J. Ash, John D.I. Harper, Cina ...
    2014 Volume 64 Issue 1 Pages 83-89
    Published: 2014
    Released: June 11, 2014
    JOURNALS FREE ACCESS FULL-TEXT HTML
    Phomopsis blight in Lupinus albus is caused by a fungal pathogen, Diaporthe toxica. It can invade all plant parts, leading to plant material becoming toxic to grazing animals, and potentially resulting in lupinosis. Identifying sources of resistance and breeding for resistance remains the best strategy for controlling Phomopsis and reducing lupinosis risks. However, loci associated with resistance to Phomopsis blight have not yet been identified. In this study, quantitative trait locus (QTL) analysis identified genomic regions associated with resistance to Phomopsis pod blight (PPB) using a linkage map of L. albus constructed previously from an F8 recombinant inbred line population derived from a cross between Kiev-Mutant (susceptible to PPB) and P27174 (resistant to PPB). Phenotyping was undertaken using a detached pod assay. In total, we identified eight QTLs for resistance to PPB on linkage group (LG) 3, LG6, LG10, LG12, LG17 and LG27 from different phenotyping environments. However, at least one QTL, QTL-5 on LG10 was consistently detected in both phenotyping environments and accounted for up to 28.2% of the total phenotypic variance. The results of this study showed that the QTL-2 on LG3 interacts epistatically with QTL-5 and QTL-6, which map on LG10 and LG12, respectively.
  • Sayaka Niwa, Katashi Kubo, Janet Lewis, Rie Kikuchi, Manickavelu Alagu ...
    2014 Volume 64 Issue 1 Pages 90-96
    Published: 2014
    Released: June 11, 2014
    JOURNALS FREE ACCESS FULL-TEXT HTML
    Supplementary material
    Fusarium head blight (FHB), caused by Fusarium graminearum, is a serious disease of wheat (Triticum aestivum L.) associated with contamination by the mycotoxin deoxynivalenol (DON). The FHB-resistant wheat cultivar ‘Sumai 3’ has been used extensively around the world. The existence of variation in FHB resistance among ‘Sumai 3’ accessions has been discussed. In this study, genetic variation among ‘Sumai 3’ accessions collected from six countries were identified using SSR markers; our results demonstrate unique chromosome regions in Sumai 3-AUT and Sumai 3-JPN (‘Sumai 3’ accessions from Austria and Japan, respectively). Field evaluation indicated strong resistance to FHB in Sumai 3-AUT. The polymorphic rate (number of polymorphic markers/number of available markers × 100) based on a DArT array was 12.5% between the two ‘Sumai 3’ accessions. Genotyping for DNA markers flanking FHB-resistant quantitative trait loci (QTLs) revealed genetic variations for the QTL regions on 5AS and 2DS; however, no variation was observed for the QTL regions on 3BS and 6B. Thus, the variation in FHB resistance among ‘Sumai 3’ accessions in the field is due to genetic diversity.
  • Shujun Zhou, Guoliang Yuan, Ping Xu, Hongxia Gong
    2014 Volume 64 Issue 1 Pages 97-102
    Published: 2014
    Released: June 11, 2014
    JOURNALS FREE ACCESS FULL-TEXT HTML
    Based on a recent hypothesis, “Five same genomes of endosperm are essential for its development in Lilium”, it is expected that allotriploid lily (OTO) can be hybridized with diploid Oriental lily (OO) for introgression breeding in Lilium L.. To test the hypothesis, OTO lilies, ‘Belladonna’, ‘Candy Club’ and ‘Travatore’, were used as the maternal parents and crossed with two diploid OO cultivars, ‘Siberia’ and ‘Sorbonne’, and the species L. regale Wilson (TT). Results showed that capsules of all OTO × OO hybridizations developed well and 0.8~3.3 viable seedlings per ovary were obtained through normal pollination and embryo rescue; however, all OTO × TT crosses failed. Genomic in situ hybridization showed that the progenies of the OTO × OO hybridizations were aneuploid and a variable number of T-genome chromosomes were introduced into the progenies through the allotriploid lilies. The present results not only demonstrate that allotriploid OTO lilies, although male sterile, can be used as maternal parents to produce aneuploid progenies, but also strongly support the new hypothesis in lily breeding.
Note
  • Naoya Yamaguchi, Hiroyuki Yamazaki, Shizen Ohnishi, Chika Suzuki, Seij ...
    2014 Volume 64 Issue 1 Pages 103-108
    Published: 2014
    Released: June 11, 2014
    JOURNALS FREE ACCESS FULL-TEXT HTML
    In Hokkaido, northern Japan, soybean [Glycine max (L.) Merr.] crops are damaged by cold weather. Chilling temperatures result in the appearance of cracking seeds (CS) in soybean crops, especially those grown in eastern and northern Hokkaido. Seed coats of CS are severely split on the dorsal side, and the cotyledons are exposed and frequently separated. CS occurrence causes unstable production because these seeds have no commodity value. However, little is known about the CS phenomenon. The aims of this study were to identify the cold-sensitive stage associated with CS occurrence and to develop a method to select CS-tolerant lines. First, we examined the relationship between chilling temperatures after flowering and CS occurrence in field tests. The average temperature 14 to 21 days after flowering was negatively correlated with the rate of CS. Second, we evaluated differences in CS tolerance among soybean cultivars and breeding lines in field tests. ‘Toyohomare’ and ‘Toiku-238’ were more CS-tolerant than ‘Yukihomare’ and ‘Toyomusume’. Third, we developed a selection method in which plants were subjected to 21-day chilling-temperature treatment from 10 days after flowering in a phytotron. This enabled comparisons of CS tolerance among cultivars. This selection method will be useful for breeding CS-tolerant soybeans.
feedback
Top