Bioscience, Biotechnology, and Biochemistry
Online ISSN : 1347-6947
Print ISSN : 0916-8451
Biochemistry & Molecular Biology Regular Papers
Directed Evolution for Thermostabilization of a Hygromycin B Phosphotransferase from Streptomyces hygroscopicus
Naohisa SUGIMOTOYasuaki TAKAKURAKentaro SHIRAKIShinya HONDANaoki TAKAYATakayuki HOSHINOAkira NAKAMURA
Author information
JOURNAL FREE ACCESS
Supplementary material

2013 Volume 77 Issue 11 Pages 2234-2241

Details
Abstract

To obtain a selection marker gene functional in a thermophilic bacterium, Thermus thermophilus, an in vivo-directed evolutionary strategy was conducted on a hygromycin B phosphotransferase gene (hyg) from Streptomyces hygroscopicus. The expression of wild-type hyg in T. thermophilus provided hygromycin B (HygB) resistance up to 60 °C. Through selection of mutants showing HygB resistance at higher temperatures, eight amino acid substitutions and the duplication of three amino acids were identified. A variant containing seven substitutions and the duplication (HYG10) showed HygB resistance at a highest temperature of 74 °C. Biochemical and biophysical analyses of recombinant HYG and HYG10 revealed that HYG10 was in fact thermostabilized. Modeling of the three-dimensional structure of HYG10 suggests the possible roles of the various substitutions and the duplication on thermostabilization, of which three substitutions and the duplication located at the enzyme surface suggested that these mutations made the enzyme more hydrophilic and provided increased stability in aqueous solution.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2013 by Japan Society for Bioscience, Biotechnology, and Agrochemistry
Previous article Next article
feedback
Top