Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Importance of Process Parameters Influencing the Mean Diameters of siRNA-Containing Lipid Nanoparticles (LNPs) on the in Vitro Activity of Prepared LNPs
Kazuya NakamuraKeisuke AiharaTatsuhiro Ishida
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML
Supplementary material

2022 Volume 45 Issue 4 Pages 497-507

Details
Abstract

Genetic drugs have the potential to treat a variety of diseases. Recently, lipid nanoparticles (LNPs) have attracted much attention among drug delivery systems for genetic drugs. LNPs have been practically used in small interfering RNA (siRNA) drugs and mRNA vaccines. Although LNPs are generally prepared by mixing nucleic acids in acidic aqueous buffer and lipid excipients in alcohol (i.e., ethanol), it is not well understood which process parameters in the LNPs formation affect the physicochemical properties and the functionality of LNPs. In this study, we used siRNA-containing LNPs as a model, and evaluated the effect that aqueous solution parameters (buffering agent type, salt concentration, and pH) and mixing parameters (ratio, speed, and temperature) exert on the physicochemical properties and in vitro gene-knockdown activity of LNPs. Among such parameters, the type of buffering agent, salt concentration (ionic strength), pH in acidic aqueous buffer, as well as the mixing ratio and speed significantly affected the mean particle diameter and in vitro gene-knockdown activity of LNPs. A strong correlation between the mean particle diameters and their in vitro gene-knockdown activities was observed. These observations suggest that the process parameters influencing the mean LNPs diameter are likely to be important in the formation of LNPs and also that these correlate with in vitro gene-knockdown activity. Because LNP systems are being further developed for future clinical applications of genetic drugs, information regarding the LNPs manufacturing process is of utmost importance. The results observed in this study will be useful for the manufacturing of optimal LNPs.

Fullsize Image
Content from these authors
© 2022 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top