Chemical and Pharmaceutical Bulletin
Online ISSN : 1347-5223
Print ISSN : 0009-2363
ISSN-L : 0009-2363
Current Topics: Regular Article
Electrochemical Analysis for Total Alkalinity of Water by the Measurement of Cathodic Prepeak of Quinone Caused by Surplus Acid
Akira Kotani Miyu SakazumeKoichi MachidaKazuhiro YamamotoHideki Hakamata
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML
Supplementary material

2024 Volume 72 Issue 3 Pages 266-270

Details
Abstract

In this study, an electrochemical analysis, coupled with the concept of back neutralization titration and the voltammetric determination of surplus acid, is proposed for determining the total alkalinity of water samples. When linear sweep voltammetry of 3,5-di-tert-butyl-1,2-benzoquinone (DBBQ) with H2SO4 in a water and ethanol (44 : 56, v/v) mixture was carried out using a bare glassy carbon working electrode, a cathodic prepeak of DBBQ caused by H2SO4 was observed on the voltammogram at a more positive potential than when compared with the original cathodic peak of DBBQ. When similar voltammetry was carried out in the presence of Na2CO3 and H2SO4, the cathodic prepeak height of DBBQ was decreased with an increase in the Na2CO3 concentration. The decrease of the cathodic prepeak height of DBBQ was found to be linearly related to the Na2CO3 concentration ranging from 0.025 to 2.5 mM (r2 = 0.998). The total equivalent concentrations of inorganic bases in samples of mineral water and tap water were determined, and then the results were converted to the total alkalinities of the water samples (mg/L CaCO3). The total alkalinities of the water samples determined by the present electrochemical analysis were essentially the same compared with those by the neutralization titration method. From these results, we were able to demonstrate that the present electrochemical analysis with accuracy and precision could be applied to determine the total alkalinity, which is one of the indicators to examine water quality. The present electrochemical analysis would contribute to achieving the sustainable development goals (SDGs) of #6 and #14.

Fullsize Image
Content from these authors
© 2024 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top