2025 Volume 73 Issue 3 Pages 227-233
The wearing of medical gowns during anticancer drug preparation is recommended for the prevention of drug exposure. Non-breathable and breathable gowns (gown− and gown+, respectively) are both available. However, anticancer drugs may permeate “gown+.” In the present study, water, hydrophilic and lipophilic dyes, and aqueous solutions of several model chemicals with different physical properties (pyridoxine, antipyrine, ethyl p-hydroxybenzoate, and butyl p-hydroxybenzoate) were applied to four types of gowns and their chemical permeabilities were measured. The permeability of gowns to vaporized ethanol was also investigated because several volatile anticancer drugs are currently used in the treatment of cancer. The results obtained showed that the hydrophilic chemical, pyridoxine, did not permeate any of the gowns tested. Furthermore, gowns became more permeable as the lipophilicity of chemicals increased. No significant changes were observed in the chemical permeability between “gown−” and “gown+,” suggesting that the protective efficacy of the gowns against permeation by anticancer drugs was similar regardless of breathability. On the contrary, “gown + ” was permeable to vaporized ethanol, whereas “gown−” was not. The present study demonstrates the need for safety measures in lipophilic or volatile anticancer drug handling and the importance of developing medical gowns that are highly resistant to chemical permeation.