保全生態学研究
Online ISSN : 2424-1431
Print ISSN : 1342-4327
総説
深層学習による画像認識技術の生態学への応用-植物種と植生の識別を中心に-
渡部 俊太郎大西 信徳皆川 まり伊勢 武史
著者情報
ジャーナル オープンアクセス

2020 年 25 巻 1 号

詳細
抄録

生物の種や群集の分布情報の把握やモニタリングは、環境科学や自然資源の管理の研究を行う上で最も重要な課題であり、これらの遂行のためには正しい種同定の技術が欠かせない。しかし、種同定の作業には大きな労力がかかる。画像に基づく生物種の自動同定は種同定や種の分布のマッピングの労力を削減するうえで有望な技術になるかもしれない。本稿では、近年画像認識や分類の分野で画期的な成果をあげている深層学習(deep learning)の技術に焦点を当てる。まず、深層学習の主要なアルゴリズムであるニューラルネットワークおよび、畳み込みニューラルネットワークの技術的な背景について簡単に説明を行う。次に、深層学習の技術の適用事例として、植物の種識別およびリモートセンシングでの植生マッピングの研究事例を紹介し、今後の展望を述べる。深層学習の実用化により、画像分類や物体検知などの精度が飛躍的な向上を見せつつある。今後、生態学にかかわる様々な画像データを体系的に整理することで、これまで大きな労力を要してきた生物多様性や植生のマッピング・モニタリングを従来よりもはるかに低労力でかつ高い時間解像度で行うことが可能になることが期待される。

著者関連情報
© 2020 一般社団法人 日本生態学会

この記事はクリエイティブ・コモンズ [表示 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by/4.0/deed.ja
前の記事 次の記事
feedback
Top