自動制御連合講演会講演論文集
第46回自動制御連合講演会
セッションID: FA2-04-3
会議情報

一般講演
不確定最適化問題の遺伝アルゴリズムによる低感度解の導出法の提案
安達 正和*山本 恵輔清水 良明
著者情報
会議録・要旨集 フリー

詳細
抄録
Without considering various uncertainties involved in system model, it happens likely that the optimum solution is useful only in specific situation or insignificant at worst. Concerning with parameter uncertainties, in this study, we propose a new genetic optimization method to obtain an insensitive solution. We first formulate the problem as a statistical optimization problem that will maximize the expectation of the objective function. Then we propose a new genetic algorithm where fitness is calculated by both expectation and variance of the objective function. Through numerical experiment, we have shown the effectiveness of the proposed method compared with the conventional methods. Moreover, we have shown application of the PVM (Parallel Virtual Machine) can improve its solution efficiency.
著者関連情報
© 2003 自動制御連合講演会実行委員会
前の記事 次の記事
feedback
Top