Article ID: 7202203
Here, we aimed to construct a biological saccharification process that combines the steps of enzyme production and enzymatic saccharification using an aerobic fungus Trichoderma reesei, an excellent cellulase producer. Sugar production consists of the growth phase at 28 °C and the saccharification phase at 50 °C. Final sugar yields from alkali-treated rice straw and microcrystalline cellulose using the T. reesei M2-1 strain were greatly affected by mycelial inoculum size and growth phase periods. The optimization of these factors yielded 74.5 % and 60.6 % of sugar from the alkali-treated rice straw and microcrystalline cellulose, respectively, at 120 h of the biological saccharification process. In comparison with the process employing anaerobic microorganisms, a relatively higher yield of sugars was achieved within a shorter period and the use of non-GM fungal strain. However, large variability in sugar yields based on feedstocks suggests imperceptible differences in initial conditions.