精密工学会誌
Online ISSN : 1882-675X
Print ISSN : 0912-0289
ISSN-L : 0912-0289
論文
カテゴリーに特化したハンドクラフト特徴量による異常検知モデル
川上 創一郎石田 健悟大橋 剛介
著者情報
ジャーナル フリー

2025 年 91 巻 1 号 p. 62-66

詳細
抄録

In this paper, a highly accurate anomaly detection method using handcrafted feature extraction is presented for particular categories of MVTec AD, which are benchmark data sets of anomaly detection. In this method, local features based on grey level gradients are sampled in a subset by greedy method, and anomaly is detected by Euclidean distance. Evaluations for the category "screw" showed that the proposed method gained higher AUROC than PatchCore, which is one of State-of-the-art of deep-learning model.

著者関連情報
© 2025 公益社団法人 精密工学会
前の記事 次の記事
feedback
Top