精密工学会誌
Online ISSN : 1882-675X
Print ISSN : 0912-0289
ISSN-L : 0912-0289
論文
画像予測モデルを導入した価値関数に基づく深層強化学習
加藤 誉基西片 智広山内 悠嗣
著者情報
ジャーナル フリー

2025 年 91 巻 4 号 p. 518-525

詳細
抄録

Reinforcement learning is an unsupervised learning method that enables an agent to learn its behavior via interaction with the environment. By maximizing the value that represents the expected reward over a certain period of time, the agent can learn to perform the required action. To obtain a high value, selecting the optimal action in an unknown future state is necessary. If an unknown future state can be predicted in advance, better actions can be performed. Therefore, obtaining a high value as a result is possible. In this study, we use a deep learning-based future image generation model to predict unknown future states in advance. By predicting the future state, selecting actions that lead to a higher value is possible. Thus, higher rewards can be expected at an early stage.

著者関連情報
© 2025 公益社団法人 精密工学会
前の記事 次の記事
feedback
Top