ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2A2-D02
会議情報

再帰型ニューラルネットワークを用いた深度カメラによる歩行動作中の床反力推定
前田 真太郎*菅井 諒関口 雄介林部 充宏大脇 大
著者情報
会議録・要旨集 認証あり

詳細
抄録

In gait analysis, ground reaction forces (GRFs) provide important information about gait function assessment. However, due to the financial and time-consuming costs, the use of force plates for gait assessment in the rehabilitation field is limited. To solve these problems, previous studies have conducted to estimate the GRFs without the force plate. The purpose of this study is to estimate the 3-axis GRFs during walking from kinematic data of markerless motion capture system. For this purpose, we proposed a GRF estimation model using LSTM. The accuracy of the proposed model was verified by comparing with the estimation model using kinematic data obtained from marker-based motion capture system.The proposed model was found to have an estimation error of 20% compared to the measurements obtained from the force plates.

著者関連情報
© 2022 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top