ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1A1-E02
会議情報

全身動力学モデル予測制御における高速な自己衝突回避
*神 孝典小林 泰介土井 将弘
著者情報
会議録・要旨集 認証あり

詳細
抄録

This paper proposes self-collision avoidance for whole-body model predictive control (WB-MPC). Since WB-MPC requires solving a large-scale optimization problem, the gradients of the dynamics and cost functions must be computed quickly. To compute the gradient of the self-collision detection quickly, we create a collision detector using a deep neural network. The DNN-used collision detector estimates the minimum distance between all body frames based on the whole body joint angles, converting to a cost. As a result, it enables WB-MPC to plan long-term self-collision-aware motion by using its gradient calculated at high speed. The proposed method was implemented for a physics simulation using a dual-arm robot and outperformed the previous method with inverse kinematics in terms of long-term planning with self-collision avoidance.

著者関連情報
© 2024 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top