Article ID: 2026009
Over the past decades, the prevalence of machine learning (ML) methods has made the development of ML-based constitutive models for granular materials undoubtedly a popular subject. Numerous studies have been made to feature the loading path or history-dependent stress-strain response of granular media using neural networks. In this work, a novel finite element method (FEM)–ML multiscale approach was developed by incorporating internal variables to improve the simulation accuracy of 3D history-dependent granular materials for the first time. To this end, a surrogate constitutive model based on the single-step-based multi-layer perceptron (MLP) neural network was used to replace representative volume element (RVE) simulations conducted by the discrete element method (DEM) in the multiscale FEM–DEM approach. Although the prediction principle of the MLP aligns with the FEM algorithm, artificially added internal variables are required to differentiate the loading history. To address this issue, history variables associated with the Frobenius norm are proposed to be fed into the MLP coupled with the strain tensor to extract the history-dependent behaviour of granular assemblies. The developed FEM–ML approach was demonstrated in 3D conventional triaxial compression (CTC) simulations. Compared to the multiscale FEM–DEM approach, the proposed FEM–ML method exhibits a significantly improved computational efficiency.