Mechanical Engineering Journal
Online ISSN : 2187-9745
ISSN-L : 2187-9745

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Design and fabrication of an automotive frame model leveraging anisotropic topology optimization and tailored fiber placement
Yoshihiro IWANOAtsushi WADARyohei TAKAYAMAMasaaki TANAKAYuqing ZHOUIsao OHASHIKatsuharu YOSHIKAWAAtsushi KAWAMOTOTsuyoshi NOMURA
著者情報
ジャーナル オープンアクセス 早期公開

論文ID: 24-00008

この記事には本公開記事があります。
詳細
抄録

This paper presents a case study of the design, fabrication, and evaluation of an automotive rear-frame model made of variable axial composites (VAC), using a tailored fiber placement (TFP) technique. Conventionally, the design of a three-dimensional complex VAC structure places significant demands on mechanical engineering expertise (for anisotropic structural design) and on man-hours (for fiber-path CAD). The proposed methods facilitate the design of complex VAC structures with significantly reduced manpower requirements. A computational design method, anisotropic topology optimization, was used to create the base design. The fiber paths on the preform surfaces were generated using a Turing pattern algorithm (based on optimized fiber orientation distributions) subsequent to designing developable three-dimensional surfaces to fill the interior of the target structure. The preforms were fabricated using a computer numerical control (CNC) embroidery machine by stitching the raw fiber tow onto the base fabric in accordance with the generated fiber path data. After stacking the preforms in the mold, they were formed using vacuum-assisted resin-transfer molding (VaRTM). The static stiffness of the prototype was evaluated experimentally, and the results were compared with numerical simulations. This study demonstrates the potential for achieving further weight reduction in large-scale 3D structures by combining innovative computational design techniques with advanced fabrication methods.

著者関連情報
© 2024 The Japan Society of Mechanical Engineers

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
feedback
Top