Medical Imaging Technology
Online ISSN : 2185-3193
Print ISSN : 0288-450X
ISSN-L : 0288-450X
特集/医用画像処理におけるGenerative Adversarial Networksの利用
GANを用いた実X線画像からの疑似X線画像変換 ―骨盤傾斜角推定手法の実画像への適用―
日朝 祐太大竹 義人松岡 拓未高尾 正樹菅野 伸彦佐藤 嘉伸
著者情報
ジャーナル 認証あり

2019 年 37 巻 3 号 p. 125-129

詳細
抄録

人工股関節全置換術において,立位姿勢での骨盤傾斜角は,カップの至適設置角度の術前計画で重要である.立位姿勢での骨盤傾斜角は,仰臥位で撮影されるCT画像からは解析できないため,立位で撮影可能なX線画像を用いた研究が報告されている.これまでに,X線画像と患者個別のCT画像との2D-3D位置合わせ手法が提案されているが,CT画像の撮影には高線量被曝が伴うため,通常臨床では応用範囲が限られている.この問題に対して,われわれは,畳み込みニューラルネットワークによりX線画像のみから骨盤傾斜角を推定する手法を提案し,疑似X線画像を用いたシミュレーション実験を行ってきた.しかし,実画像への適用は,画像中のノイズやX線スペクトラムによる影響のため困難であった.本稿では,敵対的生成ネットワーク(GAN)を用いて実X線画像から疑似X線画像に変換するネットワークを導入し,従来の骨盤傾斜角推定ネットワークを実問題に適用した例について紹介する.

著者関連情報
© 2019 日本医用画像工学会
前の記事 次の記事
feedback
Top