2020 年 22 巻 2 号 p. 118-126
相加性は統計熱力学の基本的な性質である.相加性を認めれば,そこからエントロピーの凸性,異なるアンサンブルの等価性,比熱の非負性など,様々な重要な性質が導かれる.統計力学の理論を数学的に厳密に適用すると,短距離相互作用系の平衡状態は必ず相加性を満たすという結論が得られる.しかしながら,この議論には落とし穴があり,短距離相互作用系であっても,「真の平衡状態」に達する前に現れる長寿命の「準平衡状態」においては,自由度間に実効的な長距離相互作用が働く結果相加性を破る場合があることを説明する.この「準平衡状態」はもとのハミルトニアンとは異なるハミルトニアンの平衡統計力学で記述される.つまり,多体系の非平衡ダイナミクスから得られる時系列データの中に,まったく異質なハミルトニアンの平衡統計力学が埋まっていたことになる.