システム制御情報学会 研究発表講演会講演論文集
第52回システム制御情報学会研究発表講演会
セッションID: 6S1-5
会議情報

2D-PCA顔認識におけるDCTとウェーブレットの性能比較
*ウィジャヤ イ ゲデ パセク スタ内村 圭一胡 振程
著者情報
会議録・要旨集 フリー

詳細
抄録
The proposed scheme based on holistic information of face image which is obtained by DCT and multi-stage wavelet analysis and 2D-PCA classifier to classify the facial feature to a person’s class. The objectives of the proposed method are to find the best frequency-based features extraction when it is combined with 2D_PCA, and to reduce the high space requirements of classical PCA. The facial feature is built by keeping small part of frequency domain coefficients, which have big magnitude value. Next, the facial feature is analyzed using 2D-PCA for finding the class separation. From the experimental results can be concluded that the frequency analysis is an efficient way to reduce memory space requirements and computational load of classical PCA and 2D-PCA. The DCT-based facial feature gives the best performance.
著者関連情報
© 2008 システム制御情報学会
前の記事 次の記事
feedback
Top