抄録
A multi-divided rotary adsorber was proposed to realize a double-stage dehumidification in 2-rotor desiccant cooling process. In this process, once dehumidified and cooled air was dehumidified again at the different adsorption zone of the same desiccant rotor. Four process flow configurations were experimentally tested for investigations of the appropriate outside air inlet position and rotating directions of the rotary adsorber and rotary heat exchanger. It was found that dehumidifying performance was strongly influenced by the supply position of outside air to the adsorbent rotor. Humid outside air should be supplied to the latter half of the adsorption zone and once dehumidified air should be sent to the first half of the adsorption zone. This is because the increase in the amount adsorbed at the first half of the adsorption step resulted in a poor adsorbabilty at the latter half of the adsorption step for the once dehumidified dry air. Therefore, the effective use of the adsorbent rotor could be done by considering the angular distribution of the amount of adsorbed. Consequently, 30% larger amount of dehumidification than that of conventional processes under a humid summer condition was confirmed. Regarding the product air temperature, the process configurations at which secondary dehumidified air was cooled at the first half of the sensible rotor produced roughly 5 °C lower temperature air than that of the other. This implied that the directions of rotation of the adsorbent rotor and the rotary heat exchanger, or dehumidification - cooling sequence, also had a great impact on the product air condition.