IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Special Section on Cryptography and Information Security
Fault Injection Attacks Utilizing Waveform Pattern Matching against Neural Networks Processing on Microcontroller
Yuta FUKUDAKota YOSHIDATakeshi FUJINO
Author information
JOURNAL FREE ACCESS

2022 Volume E105.A Issue 3 Pages 300-310

Details
Abstract

Deep learning applications have often been processed in the cloud or on servers. Still, for applications that require privacy protection and real-time processing, the execution environment is moved to edge devices. Edge devices that implement a neural network (NN) are physically accessible to an attacker. Therefore, physical attacks are a risk. Fault attacks on these devices are capable of misleading classification results and can lead to serious accidents. Therefore, we focus on the softmax function and evaluate a fault attack using a clock glitch against NN implemented in an 8-bit microcontroller. The clock glitch is used for fault injection, and the injection timing is controlled by monitoring the power waveform. The specific waveform is enrolled in advance, and the glitch timing pulse is generated by the sum of absolute difference (SAD) matching algorithm. Misclassification can be achieved by appropriately injecting glitches triggered by pattern detection. We propose a countermeasure against fault injection attacks that utilizes the randomization of power waveforms. The SAD matching is disabled by random number initialization on the summation register of the softmax function.

Content from these authors
© 2022 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top