Cell Structure and Function
Online ISSN : 1347-3700
Print ISSN : 0386-7196
ISSN-L : 0386-7196
Volume 25, Issue 1
Displaying 1-7 of 7 articles from this issue
REVIEW
  • Taro Q. P. Uyeda, Chikako Kitayama, Shigehiko Yumura
    2000 Volume 25 Issue 1 Pages 1-10
    Published: February 01, 2000
    Released on J-STAGE: June 28, 2000
    JOURNAL FREE ACCESS
    Similar to higher animal cells, ameba cells of the cellular slime mold Dictyostelium discoideum form contractile rings containing filaments of myosin II during mitosis, and it is generally believed that contraction of these rings bisects the cells both on substrates and in suspension. In suspension, mutant cells lacking the single myosin II heavy chain gene cannot carry out cytokinesis, become large and multinucleate, and eventually lyze, supporting the idea that myosin II plays critical roles in cytokinesis. These mutant cells are however viable on substrates. Detailed analyses of these mutant cells on substrates revealed that, in addition to "classic" cytokinesis which depends on myosin II ("cytokinesis A"), Dictyostelium has two distinct, novel methods of cytokinesis, 1) attachment-assisted mitotic cleavage employed by myosin II null cells on substrates ("cytokinesis B"), and 2) cytofission, a cell cycle-independent division of adherent cells ("cytokinesis C"). Cytokinesis A, B, and C lose their function and demand fewer protein factors in this order. Cytokinesis B is of particular importance for future studies. Similar to cytokinesis A, cytokinesis B involves formation of a cleavage furrow in the equatorial region, and it may be a primitive but basic mechanism of efficiently bisecting a cell in a cell cycle-coupled manner. Analysis of large, multinucleate myosin II null cells suggested that interactions between astral microtubules and cortices positively induce polar protrusive activities in telophase. A model is proposed to explain how such polar activities drive cytokinesis B, and how cytokinesis B is coordinated with cytokinesis A in wild type cells.

    Download PDF (257K)
REGULAR ARTICLES
  • Noriyuki Matsuda, Takashi Ueda, Yukiko Sasaki, Akihiko Nakano
    2000 Volume 25 Issue 1 Pages 11-20
    Published: February 01, 2000
    Released on J-STAGE: June 28, 2000
    JOURNAL FREE ACCESS
    A large number of Rab/Ypt-family small GTPases have been identified from higher plants. While some of them can complement yeast ypt mutants, the expression of Arabidopsis Ara4 protein aggravated the growth defect of a subset of ypt mutants, probably because of the titration of common regulator(s) of yeast Ypt proteins [Ueda, T. et al. (1996) Plant Cell, 8: 2079-2091]. PRA2 from pea Pisum sativum encodes an interesting Rab GTPase whose expression is regulated by light [Yoshida, K. et al. (1993) Proc. Natl. Acad. Sci. USA, 90: 6636-6640]. We examined whether PRA2 complements any of the yeast ypt mutants and found again that PRA2 does not complement but rather confers the growth defect to some of the ypt mutants. No growth defect was observed when PRA2 was expressed in the wild-type yeast cells. Unlike the case of Ara4, neither Arabidopsis nor yeast GDI remedied the growth defect by Pra2, indicating that the mechanism of the exacerbation is different. Mutational analysis of PRA2 suggests that the growth inhibition can be ascribed to unidentified factor(s) which prefers the GTP-bound form of Pra2. This yeast system will be useful for identifying such putative regulatory factor(s) from yeast and plants and analyzing their interactions with Pra2.

    Download PDF (401K)
  • Keigo Mizutani, Tadashi Matsubayashi, Shigeru Iwase, Takahiro S. Doi, ...
    2000 Volume 25 Issue 1 Pages 21-31
    Published: February 01, 2000
    Released on J-STAGE: June 28, 2000
    JOURNAL FREE ACCESS
    The Delta/Serrate-Notch pathway is involved in intercellular signaling that controls cell fate during the development of invertebrates and vertebrates. Delta is a prototype of Notch ligands and has been studied extensively in Drosophila. In higher vertebrates, four Delta/Serrate homologues and four Notch homologues have been identified. Recent studies showed that the murine Delta homologue, mDelta1, is essential in early embryogenesis. The biological activity of mammalian Delta and its roles in cellular differentiation, however, have remained unclear. In this study, we first surveyed expression of mDelta1 in the adult mouse and found it to be present in a wide range of tissues. For testing biological activity of mDelta1, we expressed a mDelta1 full-length cDNA in L cells using a eukaryotic expression vector. Effects of mDelta1 on cellular differentiation were examined in two independent systems, featuring C2C12 myogenic differentiation and multipotent murine bone marrow cell differentiation. Inhibition of the former was observed with mDelta1 expression on L cells, associated with suppression of myogenin, a myogenic transcription factor. Expression of mDelta1 in conjunction with GM-CSF promoted differentiation of bone marrow cells to myeloid dendritic cells at the expense of other lineages. Although the effects of mDelta1 on two differentiation systems appeared opposing, as inhibition occurring in one and induction in the other, this can be understood by the unifying concept of generation of diverse cell types from equivalent progenitors. Thus, the present study provided evidence that mammalian Delta participates in intercellular signaling, determining the cell fate in a wide variety of tissues.

    Download PDF (434K)
  • Hidefumi Kitazawa, Junko Iida, Atsuko Uchida, Kazu Haino-Fukushima, To ...
    2000 Volume 25 Issue 1 Pages 33-39
    Published: February 01, 2000
    Released on J-STAGE: June 28, 2000
    JOURNAL FREE ACCESS
    p34cdc2 kinase-phosphorylation sites in the microtubule (MT)-binding region of MAP4 were determined by peptide sequence of phosphorylated MTB3, a fragment containing the carboxy-terminal half of human MAP4. In addition to two phosphopeptides containing Ser696 and Ser787 which were previously indicated to be in vivo phosphorylation sites, two novel phosphopeptides, containing Thr892 or Thr901 and Thr917 as possible phosphorylation sites, were isolated, though only in in vitro phosphorylation. The role of phosphorylation at Ser696 and Ser787, which were differently phosphorylated during the cell cycle (Ookata et al., (1997). Biochemistry, 36: 15873-15883), was investigated in MT-polymerization, using MAP4 Ser to Glu mutants, which mimic phosphorylation at each site. Mutation of Ser787 to Glu strikingly reduced the MAP4's MT-polymerization activity, while Glu-mutation at Ser696 did not. These results suggest that Ser787 could be the critical phosphorylation site causing MTs to be dynamic at mitosis.

    Download PDF (218K)
  • Kohzaburo Fujikawa-Yamamoto, Hiroko Yamagishi, Zhi-ping Zong, Chie Ohd ...
    2000 Volume 25 Issue 1 Pages 41-46
    Published: February 01, 2000
    Released on J-STAGE: June 28, 2000
    JOURNAL FREE ACCESS
    To examine whether or not cells polyploidized by different mechanisms behave in a different manner after drug removal, V79 Chinese hamster cells were assessed by flow cytometry (FCM) after their polyploidization by demecolcine and K-252a, inhibitors of spindle-fiber formation and protein kinase, respectively. Cell cycle analysis of DNA histograms of V79 cells before and after the drug release was performed. With both drugs, the ploidy of V79 cells increased just after the drug removal and was maintained for a week. A difference was evident 10 days after the release. Tetraploid cells were the main population from 10 to 18 days after the release of K-252a, but not demecolcine. Cell cycle parameters were almost the same in pseudo diploid and tetraploid V79 cells, except for the tetraploid S phase which was 2h longer.

    Download PDF (419K)
  • Miho Iijima, Hajime Shimizu, Yoshimasa Tanaka, Hideko Urushihara
    2000 Volume 25 Issue 1 Pages 47-55
    Published: February 01, 2000
    Released on J-STAGE: June 28, 2000
    JOURNAL FREE ACCESS
    Flavohemoglobins are being identified in an expanding number of prokaryotes and unicellular eukaryotes. These molecules consist of an N-terminal hemoglobin domain and a C-terminal oxidoreductase domain, and are considered to function in storage or as sensors for O2, and in defense against oxidative stress and/or NO. However, their physiological significance has not yet been determined. Here, we isolated and analyzed two flavohemoglobin genes of Dictyostelium discoideum, DdFHa and DdFHb, which lie close to each other in the genome. DdFHs were induced by submerged conditions, and enriched in the sexually mature cells of D. discoideum. Although they were not essential for growth or development under standard laboratory conditions, disruption of both genes caused an increase in number of large but uninuclear cells, and hypersensitivity to higher concentrations of glucose and to NO releasers. These results indicate that DdFHs are responsible for transducing NO signals to maintain normal cellular conditions against environmental stresses.

    Download PDF (904K)
  • Kingo Takiguchi, Shigeko Yamashiro-Matsumura, Fumio Matsumura
    2000 Volume 25 Issue 1 Pages 57-65
    Published: February 01, 2000
    Released on J-STAGE: June 28, 2000
    JOURNAL FREE ACCESS
    Gelsolin is one of the best known actin-binding proteins with several distinct activities regulated by calcium. Using a kinase fraction isolated from mitotic HeLa cells, we found that the plasma form of gelsolin can be phosphorylated at a site located within the NH2-terminus region which does not exist in the cytoplasmic form. After this phosphorylation, gelsolin no longer requires Ca2+ for activity; it severs and subsequently caps actin filaments, and nucleates filament formation in Ca2+-free solution. These findings may clarify the mechanism of gelsolin regulation by Ca2+, and indicate that changes in electrical interactions between the NH2- and COOH-terminal ends are important for this regulation. Moreover, since only a single site is phosphorylated, and since the phosphorylated region does not contribute to this protein's own activity, the results suggest that a single chemical charge modification at a site away from the protein's core structure, such as this phosphorylation site, is sufficient to alter the protein's function.

    Download PDF (260K)
feedback
Top