Cell Structure and Function
Online ISSN : 1347-3700
Print ISSN : 0386-7196
ISSN-L : 0386-7196
Volume 40, Issue 1
Displaying 1-5 of 5 articles from this issue
  • Tomonari Hamaguchi, Shinichi Nakamuta, Yasuhiro Funahashi, Tetsuya Tak ...
    Article type: Full Article
    2015 Volume 40 Issue 1 Pages 1-12
    Published: 2015
    Released on J-STAGE: January 28, 2015
    Advance online publication: November 14, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Protein kinase A (PKA) is a serine/threonine kinase whose activity depends on the levels of cyclic AMP (cAMP). PKA plays essential roles in numerous cell types such as myocytes and neurons. Numerous substrate screens have been attempted to clarify the entire scope of the PKA signaling cascade, but it is still underway. Here, we performed a comprehensive screen that consisted of immunoprecipitation and mass spectrometry, with a focus on the identification of PKA substrates. The lysate of HeLa cells treated with Forskolin (FSK)/3-isobutyl methyl xanthine (IBMX) and/or H-89 was subjected to immunoprecipitation using anti-phospho-PKA substrate antibody. The identity of the phosophoproteins and phosphorylation sites in the precipitants was determined using liquid chromatography tandem mass spectrometry (LC/MS/MS). We obtained 112 proteins as candidate substrates and 65 candidate sites overall. Among the candidate substrates, Rho-kinase/ROCK2 was confirmed to be a novel substrate of PKA both in vitro and in vivo. In addition to Rho-kinase, we found more than a hundred of novel candidate substrates of PKA using this screen, and these discoveries provide us with new insights into PKA signaling.
  • Mai Taniguchi, Satomi Nadanaka, Soichiro Tanakura, Shogo Sawaguchi, Sa ...
    Article type: Full Article
    2015 Volume 40 Issue 1 Pages 13-30
    Published: 2015
    Released on J-STAGE: January 28, 2015
    Advance online publication: November 15, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material
    The Golgi stress response is a mechanism by which, under conditions of insufficient Golgi function (Golgi stress), the transcription of Golgi-related genes is upregulated through an enhancer, the Golgi apparatus stress response element (GASE), in order to maintain homeostasis in the Golgi. The molecular mechanisms associated with GASE remain to be clarified. Here, we identified TFE3 as a GASE-binding transcription factor. TFE3 was phosphorylated and retained in the cytoplasm in normal growth conditions, whereas it was dephosphorylated, translocated to the nucleus and activated Golgi-related genes through GASE under conditions of Golgi stress, e.g. in response to inhibition of oligosaccharide processing in the Golgi apparatus. From these observations, we concluded that the TFE3-GASE pathway is one of the regulatory pathways of the mammalian Golgi stress response, which regulates the expression of glycosylation-related proteins in response to insufficiency of glycosylation in the Golgi apparatus.
  • Haruko Naito, Gohta Goshima
    Article type: Full Article
    2015 Volume 40 Issue 1 Pages 31-41
    Published: 2015
    Released on J-STAGE: February 20, 2015
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material
    The NACK kinesins (NACK1, NACK2 in tobacco and AtNACK1/HINKEL, AtNACK2/STUD/TETRASPORE in Arabidopsis), members of a plant-specific kinesin-7 family, are required for cytokinesis. Previous studies using tobacco and Arabidopsis cells showed that NACK1 and AtNACK1 at the phragmoplast midzone activate the MAP kinase cascade during the late M phase, which is critical for the cell plate formation. However, the loss-of-function phenotype has not been investigated in details in living cells and the molecular activity of this kinesin remains to be determined. Here, we report the mitotic roles and activity of the NACK kinesins in the moss Physcomitrella patens. When we simultaneously knocked down three PpNACKs by RNA-interference (RNAi) in protonemal cells, we observed a cytokinesis failure following a defect in phragmoplast expansion. In addition, misaligned chromosomes were frequently detected in the pre-anaphase spindle and the anaphase onset was significantly delayed, indicating that PpNACK also plays a role in pre-anaphase. Consistent with the appearance of early and late mitotic phenotypes, endogenous PpNACK was localised to the interpolar microtubule (MT) overlap from prometaphase through telophase. In vitro MT gliding assay and single motor motility assay showed that PpNACK-b is a processive, plus-end-directed motor, suggesting that PpNACK is capable of transporting cargoes along the spindle/phragmoplast MT. Our study using Physcomitrella patens demonstrated that PpNACK is an active motor protein and identified unexpected and conserved roles of PpNACK during the mitosis of P. patens.
  • Hidemasa Goto, Kousuke Kasahara, Masaki Inagaki
    Article type: Mini-review and Review
    2015 Volume 40 Issue 1 Pages 43-50
    Published: 2015
    Released on J-STAGE: February 20, 2015
    Advance online publication: December 25, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Checkpoint kinase 1 (Chk1) is a conserved protein kinase central to the cell-cycle checkpoint during DNA damage response (DDR). Until recently, ATR, a protein kinase activated in response to DNA damage or stalled replication, has been considered as the sole regulator of Chk1. Recent progress, however, has led to the identification of additional protein kinases involved in Chk1 phosphorylation, affecting the subcellular localization and binding partners of Chk1. In fact, spatio-temporal regulation of Chk1 is of critical importance not only in the DDR but also in normal cell-cycle progression. In due course, many potent inhibitors targeted to Chk1 have been developed as anticancer agents and some of these inhibitors are currently in clinical trials. In this review, we summarize the current knowledge of Chk1 regulation by phosphorylation.
  • Yuji Nakayama, Narumi Uno, Katsuhiro Uno, Yamato Mizoguchi, Shinya Kom ...
    Article type: Full Article
    2015 Volume 40 Issue 1 Pages 51-59
    Published: 2015
    Released on J-STAGE: March 17, 2015
    Advance online publication: January 09, 2015
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material
    Although most cell lines undergo mitotic arrest after prolonged exposure to microtubule inhibitors, some cells subsequently exit this state and become tetraploid. Among these cells, limited numbers of rodent cells are known to undergo multinucleation to generate multiple small independent nuclei, or micronuclei by prolonged colcemid treatment. Micronuclei are thought to be formed when cells shift to a pseudo G1 phase, during which the onset of chromosomal decondensation allows individual chromosomes distributed throughout the cell to serve as sites for the reassembly of nuclear membranes. To better define this process, we used long-term live cell imaging to observe micronucleation induced in mouse A9 cells by treating with the microtubule inhibitor colcemid. Our observations confirm that nuclear envelope formation occurs when mitotic-arrested cells shift to a pseudo G1 phase and adopt a tetraploid state, accompanied by chromosome decondensation. Unexpectedly, only a small number of cells containing large micronuclei were formed. We found that tetraploid micronucleated cells proceeded through an additional cell cycle, shifting to a pseudo G1 phase and forming octoploid micronucleated cells that were smaller and more numerous compared with the tetraploid micronucleated cells. Our data suggest that micronucleation occur when cells shift from mitotic arrest to a pseudo G1 phase, and demonstrate that, rather than being a single event, micronucleation is an inducible recurrent process that leads to the formation of progressively smaller and more numerous micronuclei.
feedback
Top