日本森林学会誌
Online ISSN : 1882-398X
Print ISSN : 1349-8509
ISSN-L : 1349-8509
論文
天然林択伐施業における選木規則の抽出
―機械学習を用いたアプローチ―
美濃羽 靖尾張 敏章中島 徹犬飼 浩
著者情報
ジャーナル フリー

2018 年 100 巻 6 号 p. 208-217

詳細
抄録

本研究では,機械学習を用いて選木結果に影響すると思われる重要な属性の機械的な抽出,収穫木の選定およびその選木規則の抽出を試みた。解析には,東京大学北海道演習林の天然林施業試験地内に成立する立木184本を用い,48属性(立木の形質や健全性など選木基準に関わる47の外観指標および胸高直径)を学習モデルの入力データとした。機械学習では,属性選択アルゴリズムを用いて収穫木を決める際に有効となる属性を機械的に抽出し,次に,決定木を用いて収穫木の選定およびその選木規則の抽出を行った。なお,学習モデルの性能評価にはMCCを用いた。解析結果より,属性選択の結果で上位を占めた外観指標の多くは,収穫木に見られた外観指標であり,上位5位のみの属性を用いた学習モデルではほとんど分類することができなかったが,上位15位の属性を用いれば十分に分類することができた。また,学習モデルを構築する際,モデルのオプションを調整することにより,分類精度の高いモデルを構築することが可能であった。決定木では学習モデルとして26モデルが構築され,そのうち一つのモデルにおいて収穫木をすべて分類することが可能であった。

著者関連情報
© 2018 一般社団法人 日本森林学会
前の記事 次の記事
feedback
Top