気象集誌. 第2輯
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Robust and Uncertain Sea-Level Pressure Patterns over Summertime East Asia in the CMIP6 Multi-Model Future Projections
OSE TomoakiENDO HirokazuTAKAYA YuheiMAEDA ShuheiNAKAEGAWA Toshiyuki
著者情報
ジャーナル オープンアクセス 早期公開

論文ID: 2022-032

この記事には本公開記事があります。
詳細
抄録

 Robust and uncertain sea-level pressure patterns over summertime East Asia in the future global warming projections and their causes are studied by applying the inter-model empirical orthogonal function (EOF) analysis to the multi-model experiments in the sixth phase of the Coupled Model Intercomparison Project (CMIP6) and focusing common features with the previous CMIP5 analysis. The ensemble average and the first to third EOF modes associated with future pressure changes are similar to the corresponding ones from CMIP5. The first and second modes represent strengthened and weakened high pressure systems in subtropical and northern East Asia, respectively. The third mode is the reverse anomaly of the climatological pressure pattern over summertime East Asia, indicating weakened southerly monsoon winds. The second mode pattern makes positive contributions to almost all the CMIP6 future pressure changes, representing a robust future projection pattern. The robust mode is the result of surface warming over the northern continents and neighboring seas that is stronger than the global average. The first and third modes are considered to be uncertain (but major) patterns in the ensemble projections because the signs of their contributions to the future changes are dependent on the model used. Suppressed vertical motion over the equatorial (northern) Indian Ocean caused by the vertically stabilized atmosphere under the global warming scenario is the source of the first (third) mode, together with the counter vertical motion anomaly over the equatorial (northern) Pacific. The above characteristics of the modes are essentially similar to those identified in the CMIP5 analysis while different sea surface temperature anomalies are related to the secondary structures of the modes. Some uncertainties in the future projections can be attributed to the systematic differences in the model climatology of the present-day precipitation, which determines the distribution of the suppressed vertical motion under the future warmer climate.

著者関連情報
© The Author(s) 2022. This is an open access article published by the Meteorological Society of Japan under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
feedback
Top