Journal of Oleo Science
Online ISSN : 1347-3352
Print ISSN : 1345-8957
ISSN-L : 1345-8957
Topics of the 6th Asian Conference on Colloid and Interface Science 2015 Japan (ACCIS2015 Japan)
Influence of Lipid Composition, pH, and Temperature on Physicochemical Properties of Liposomes with Curcumin as Model Drug
Biplab RoyPritam GuhaRavi BhattaraiPrasant NahakGourab KarmakarPriyam ChettriAmiya Kumar Panda
著者情報
ジャーナル フリー
電子付録

2016 年 65 巻 5 号 p. 399-411

詳細
抄録

The physicochemical properties of large unilamellar vesicles (LUVs) were assessed with respect to lipid composition, pH, time, and temperature by monitoring their size, zeta potential, drug payload, and thermal behavior. A conventional thin film hydration technique was employed to prepare liposomes from soy phosphatidylcholine (SPC), dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG), and a 7:3 (M/M) mixture of DPPC+DPPG along with 30 mole% cholesterol in each combination. While the size of liposomes depended on lipid composition, pH and temperature, the zeta potential was found to be independent of the pH of the medium, although it varied with liposome type. Spherical morphology and bilayer were observed by electron microscopy. The phase transition temperature increased with decreasing pH. Membrane micro-viscosity showed the highest value for SPC, and membrane rigidity increased with increasing pH. The entrapment efficiency of liposomes with reference to curcumin was as follows: DPPC>DPPC+DPPG>DPPG>SPC. Sustained release of curcumin was observed for all liposomes. Curcumin-loaded liposomes exhibited substantial antibacterial activity against the gram-positive bacteria Bacillus amyloliquefaciens. Additional studies are needed to improve the understanding of the effect of formulation variables on the physicochemical stability of liposomes.

著者関連情報
© 2016 by Japan Oil Chemists' Society
前の記事 次の記事
feedback
Top