Journal of Oleo Science
Online ISSN : 1347-3352
Print ISSN : 1345-8957
ISSN-L : 1345-8957
Nutrition and Health Function
Clarification of the Complexation Behaviour of 2,6-di-O-Methylated β-Cyclodextrin and Vitamin E and Radical Scavenging Ability of the Complex in Aqueous Solution
Shigesaburo OgawaHaruka KatsuragiKatsuya IuchiSetsuko Hara
著者情報
ジャーナル オープンアクセス
電子付録

2021 年 70 巻 10 号 p. 1461-1467

詳細
抄録

The precise understanding of the behaviour of vitamin E (α-tocopherol; Toc) complexed with cyclodextrin (CD) additives in aqueous solution is a fundamental issue for further development of their aqua-related biological applications. In this study, the solubilisation and complexation behaviours of Toc with methyl-substituted CD derivatives and the radical scavenging ability of the resulting complexes were precisely investigated in water media. Several problems were encountered upon pre-dissolving Toc in an organic solvent prior to the addition to the water media, such as enhancement of the dispersibility and decrease in the complexation capacity. Additionally, dispersions were obtained in some cases when mixing CD and Toc even in the absence of an organic solvent; therefore, to perform the measurements, a transparent solution was prepared via filtration with a nanopore filter. Consequently, unexpectedly, the addition of certain CD methylated derivatives did not always enhance the solubility of Toc significantly. However, 2,6-di-O-methylated β-CD (2,6-DMCD) formed a water-soluble inclusion complex with Toc, effectively enhancing its solubility. A phase solubility study indicated the formation of 1:2 or 1:3 Toc/CD inclusion complexes, and the interaction of 2,6-DMCD with both the chromanol head and the phytol chain of Toc was revealed by 2D ROESY nuclear magnetic resonance analysis. The interaction between 2,6-DMCD and the chromanol head was also confirmed for a 2,6-DMCD-2,2,5,7,8-pentamethyl-6-chromanol inclusion complex. Additionally, a rapid scavenging effect for molecularly dissolved Toc was demonstrated even in a system comprising a chromanol head directly encapsulated by CD. Hence, this work elucidated the precise complexation and radical scavenging ability of 2,6-DMCD-Toc in an aqueous solution, which paves the way for its biological applications.

graphical abstract Fullsize Image
著者関連情報
© 2021 by Japan Oil Chemists' Society

This article is licensed under a Creative Commons [Attribution 4.0 International] license.
https://creativecommons.org/licenses/by/4.0/
前の記事 次の記事
feedback
Top