Droplet microfluidics is a novel discipline of science dealing with generation, manipulation and creative use of emulsions - fluidic equivalent of granular matter. In this work Authors provide a comprehensive introduction to droplet microfluidics. The review covers fundamentals and presents some of the most important applications of the emulsions - representative to the broad interest in droplet microfluidics ranging from material science, through biomedical experiments and diagnostics, to applications in pharmaceutical, food, and cosmetic industries.
Novel concepts for solar cells to increase the energy conversion efficiency have proven very promising over the last decade or so. However, implementation of such light management designs have not reached commercial products. Bottom up fabrication with nanoparticles, especially from gas aggregation nanoparticle source, are the most likely path to industrial realisation. In this review paper we present a wide range of possibilities to use such nanoparticles to increase the efficiency of solar cells, both as light management and constituent.
Despite the facts that the applied particle concentration and the field of usages are completely different, air filter and bag filter are regarded as similar because of at the point of using fine fibers as dust collecting body. The article reviewed the collection performance of a single fiber collection efficiency at different mechanisms and time changes of collection performance of both filters is reviewed precisely based on numerous previous studies.
Inhaled dry powder therapeutics occupy a growing sector in the pharmaceutical market and meet demands unmet by alternative formulation counterparts. The dry powder inhaler offers the benefits of short delivery times, ease of administration, increased bioavailability, and excellent shelf-life. However, dry powder therapeutics have not transitioned to the market at the same rate as alternative pulmonary delivery platforms. This article addresses some of the barriers to the success of dry powder therapeutics from the preclinical stage to the market. The article concludes with a discussion on improvements needed to address current research model failures and identifies barriers to dry powder formulation and development.
The present study address the challenges with modeling the fluidization of ground biological materials which are typically non-spherical in shape, and have widely varying sizes. The Ergun equation that is commonly used to model particle fluidization was modified to incorporate non-uniformity sizes, shape factor, and the high void ratio that are typically present in ground biological materials. The results of the study will address the challenges in using models to scale up, size, and design equipment reactors for fluidizing biomass and other biological materials.