低温工学
Online ISSN : 1880-0408
Print ISSN : 0389-2441
ISSN-L : 0389-2441
45 巻, 1 号
選択された号の論文の4件中1~4を表示しています
巻頭言
基礎講座
  • 合金系線材
    太刀川 恭治
    2010 年 45 巻 1 号 p. 2-14
    発行日: 2010年
    公開日: 2010/04/02
    ジャーナル フリー
    The procedure for mass producing Nb-Ti alloy has been established, where the development of high-homogeneity ingots improves the reliability of the alloy. The manufacturing process of fine filamentary wires of long length has also been optimized. The Nb-Ti wires can be used up to 9 T at 4.2 K. The non-Cu Jc of the wires at 6 T and 4.2 K reaches 2,500 A/mm2 through the combination of cold drawing and heat treatment. The microstructure of resulting Nb-Ti wires is very complicated, containing dislocation sub-bands and α-Ti precipitations. The structure and flux pinning in fine filamentary wires have been studied in detail. The introduction of artificial pinning centers, for example Nb, yields an appreciable increase in Jc. Ultra-thin filamentary Nb-Ti wires with low AC loss have also been successfully fabricated. Nb-Ti based ternary alloys, for example Nb-Ti-Ta and Nb-Ti-Hf, have been studied, aiming for the enhancement of Bc2. The microstructure and performance of alloys other than Nb-Ti, for example Nb-Zr, V-Ti and Mo-Re, are also described in this article.
研究論文
  • 田中 和英, 中尾 彰浩, 浦竹 勇希寛, 柁川 一弘, 船木 和夫, 岡田 道哉
    2010 年 45 巻 1 号 p. 15-24
    発行日: 2010年
    公開日: 2010/04/02
    ジャーナル フリー
    We have fabricated a small test coil with an AlN former by employing Cu-Ni sheathed Ta barrier MgB2 multifilamentary wire made in a wind-and-react process. An overcurrent was applied to the coil conduction-cooled in an initial temperature range between 10 K and 30 K to investigate its thermal stability by measuring the temperature distribution in the winding and the terminal voltage after application of the overcurrent. The experimental results show that the permissive temperature rise without thermal runaway decreases with the initial temperature, while total heat generation at the time of thermal runaway is at a maximum when the initial temperature is approximately 14 K. We also numerically calculated the responses of the test coil to the overcurrent by simulating the electrical and thermal processes using the finite element method and V-I characteristics of the coil. The comparisons with the experimental results show that the electrical and thermal responses are reproduced well using the numerical model.
技術ノート
feedback
Top