Only a few Crepidotus species have been previously reported from subalpine areas of China. Members of Crepidotus possessing an orange-yellow pileus are rare in China as well. Here, we describe Crepidotus yuanchui, a new species characterized by an orange-yellow pileus, ovoid basidiospores, and abundant cylindric to narrowly utriform cheilocystidia. This species is widely distributed above 2000 m asl in Yunnan Province. In addition, C. caspari, which is a distinct species based on its combined characteristics of smooth basidiospores and clamp connections, is newly recorded and detailed from subalpine China. The results of phylogenetic analyses of ITS + nLSU sequences based on maximum likelihood and Bayesian inference methods support the recognition of these two species. Photographs, descriptions, line drawings, and comparisons of related species are provided.
We describe a new species of Gerhardtia from Japan based on basidiomata morphology, live culture characteristics, and molecular phylogenetic analyses. Gerhardtia venosolamellata is found on broad-leaf litter, and is characterized by tricholomatoid to marasmioid basidiomata, an off-white to pale salmon-pink pileus surface with faint marginal striae, subdistant lamellae with lateral veins, a tomentose to strigose stipe base with hyphal strands generating arthroconidia measuring 4-7 × 2-3 µm, cyanophilic, elongate-ellipsoid to cylindrical, slightly verrucose or undulate basidiospores measuring 4.5-6 × 2.5-3 µm, and cyanophilic basidia measuring 25-35 × 5-6 µm and containing siderophilous granules. Phylogenetic analyses based on the internal transcribed spacer and large subunit regions of the fungal nrDNA indicates that G. venosolamellata is related to G. sinensis and G. highlandensis, but differs from the former with respect to basidiomata color, basidiospore shape, and habitat. An isotype specimen of G. highlandensis exhibited relatively close lamellae without veins, and slightly larger basidiospores (4.5-6.5 × 2.5-3 µm). Cultured mycelia of G. venosolamellata produced arthroconidia measuring 4.5-8.5 × 2.5-3 µm with both schizolytic and rhexolytic secession on MA and PDA media, and chlamydospores occasionally covered with crystals on MA and MYG media.
We describe a new truffle species, Tuber torulosum, based on molecular and morphological analyses. This species forms a single globose ascospore per ascus, pale yellow in color, as do Japanese T. flavidosporum and Chinese T. turmericum and T. xanthomonosporum in the Japonicum clade of the Tuber phylogeny. However, it can be distinguished from them microscopically by its whitish tomentose mycelium that partially covers the ascoma surface and the mesh size of its spore ornamentation. Cystidia are moniliform and yellowish to reddish. Molecular phylogenetic analysis using the internal transcribed spacer and partial large subunit regions of ribosomal DNA also supports T. torulosum as a distinct species. On the basis of our results, we provide a key to species in the Japonicum clade.
Fungi in the genus Termitomyces are external symbionts of fungus-growing termites. The three rhizogenic Termitomyces species T. eurrhizus, T. clypeatus, and T. intermedius, and one species similar to T. microcarpus that lacks pseudorrhiza, have been reported from Ryukyu Archipelago, Japan. In contrast, only two genetic groups (types A and B) of Termitomyces vegetative mycelia have been detected in nests of the fungus-growing termite Odontotermes formosanus. In this study, we investigated the relationships between the mycelial genetic groups and the basidiomata of Termitomyces samples from the Ryukyu Archipelago. We found that all the basidioma specimens and the type B mycelia formed one clade that we identified as T. intermedius. Another clade consisted of the type A mycelia, which showed similarity to T. microcarpus, was identified as T. fragilis. Our results indicate that the Japanese T. eurrhizus and T. clypeatus specimens should re-named as T. intermedius.
Seedlings of Pinus densiflora and Abies sachalinensis were inoculated with Tuber mycelial strains of the Puberulum clade in vitro to examine the morphological characteristics of their ectomycorrhizas. Axenically germinated seedlings were inoculated with the mycelia of five taxa from the Puberulum clade and grown in glass jars for 4 mo in an illuminated incubator. The seedlings were successfully colonized by the inoculated Tuber strains, as confirmed by the nuclear ribosomal internal transcribed spacer barcoding of the synthesized ectomycorrhizas. The ectomycorrhizas were characterized by a pale yellow to brown color, short needle-shaped cystidia, and net-like hyphal arrangement, and epidermoid cells on the mantle surface; notably, these features are similar to the ectomycorrhizas of various Puberulum clade members. As the ectomycorrhizas of different Tuber species are indistinguishable by morphological characters, molecular techniques are necessary to identify ectomycorrhizas formed by Tuber species within the Puberulum clade.