Journal of Toxicologic Pathology
Online ISSN : 1881-915X
Print ISSN : 0914-9198
ISSN-L : 0914-9198
Volume 28 , Issue 3
Showing 1-7 articles out of 7 articles from the selected issue
Concise Reviews
  • Akira Inomata, Hironobu Sasano
    2015 Volume 28 Issue 3 Pages 125-132
    Published: 2015
    Released: August 03, 2015
    [Advance publication] Released: June 01, 2015
    JOURNALS FREE ACCESS
    The adrenal gland has characteristic morphological and biochemical features that render it particularly susceptible to the actions of xenobiotics. As is the case with other endocrine organs, the adrenal gland is under the control of upstream organs (hypothalamic-pituitary system) in vivo, often making it difficult to elucidate the mode of toxicity of a test article. It is very important, especially for pharmaceuticals, to determine whether a test article-related change is caused by a direct effect or other associated factors. In addition, antemortem data, including clinical signs, body weight, food consumption and clinical pathology, and postmortem data, including gross pathology, organ weight and histopathologic examination of the adrenal glands and other related organs, should be carefully monitored and evaluated. During evaluation, the following should also be taken into account: (1) species, sex and age of animals used, (2) metabolic activation by a cytochrome P450 enzyme(s) and (3) physicochemical properties and the metabolic pathway of the test article. In this review, we describe the following crucial points for toxicologic pathologists to consider when evaluating adrenal toxicity: functional anatomy, blood supply, hormone production in each compartment, steroid biosynthesis, potential medulla-cortex interaction, and species and gender differences in anatomical features and other features of the adrenal gland which could affect vulnerability to toxic effects. Finally practical approaches for evaluating adrenal toxicity in nonclinical safety studies are discussed.
    Download PDF (3550K)
  • Masami Suzuki, Chie Kato, Atsuhiko Kato
    2015 Volume 28 Issue 3 Pages 133-139
    Published: 2015
    Released: August 03, 2015
    [Advance publication] Released: June 15, 2015
    JOURNALS FREE ACCESS
    Antibodies can swiftly provide therapeutics to target disease-related molecules discovered in genomic research. Antibody engineering techniques have been actively developed and these technological innovations have intensified the development of therapeutic antibodies. From the mid-1990’s, a series of therapeutic antibodies were launched that are now being used in clinic. The disease areas that therapeutic antibodies can target have subsequently expanded, and antibodies are currently utilized as pharmaceuticals for cancer, inflammatory disease, organ transplantation, cardiovascular disease, infection, respiratory disease, ophthalmologic disease, and so on. This paper briefly describes the modes of action of therapeutic antibodies. Several non-clinical study results of the pathological changes induced by therapeutic antibodies are also presented to aid the future assessment of the toxic potential of an antibody developed as a therapeutic.
    Download PDF (2094K)
Original Articles
  • Yu-Ju Ding, Bo-Cheng Wang, Chi-Chung Wen, Chiao-Yin Sun, Hsun-Hua Lee, ...
    2015 Volume 28 Issue 3 Pages 141-149
    Published: 2015
    Released: August 03, 2015
    [Advance publication] Released: May 15, 2015
    JOURNALS FREE ACCESS
    The aim of this study was to evaluate the teratogenic effects of three common Chinese medical prescriptions, Si Jun Zi Tang (SJZT), Liu Jun Zi Tang (LJZT) and Shenling Baizhu San (SLBS), during zebrafish pronephros development. We used the transgenic zebrafish line Tg(wt1b:EGFP) to assess the teratogenic effects using 12 different protocols, which comprised combinations of 4 doses (0, 25, 250, 1,250 ng/mL) and 3 exposure methods [methods I, 12–36 hours post fertilization (hpf), II, 24–48 hpf, and III, 24–36 hpf]. As a result, few defects in the kidneys were observed in the embryos exposed to 25 ng/mL of each medical prescription. The percentage of kidney malformation phenotypes increased as the exposure concentrations increased (25 ng/mL, 0–10%; 250 ng/mL, 0–60%; 1,250 ng/mL, 80–100%). Immunohistochemistry for α6F, which is a basolateral and renal tubular differentiation marker, revealed no obvious defective phenotypes in either SJZT- or LJZT-treated embryos, indicating that these Chinese medical prescriptions had minimal adverse effects on the pronephric duct. However, SLBS-treated embryos displayed a defective phenotype in the pronephric duct. According to these findings, we suggest (1) that the Chinese medical prescriptions induced kidney malformation phenotypes that are dose dependent and (2) that the embryonic zebrafish kidney was more sensitive to SLBS than SJZT and LJZT.
    Download PDF (1740K)
  • Kazunori Kuwata, Itsuko Nakamura, Mika Ide, Hiroko Sato, Satomi Nishik ...
    2015 Volume 28 Issue 3 Pages 151-164
    Published: 2015
    Released: August 03, 2015
    [Advance publication] Released: June 01, 2015
    JOURNALS FREE ACCESS
    To investigate useful biomarkers associated with proximal tubular injury, we assessed changes in levels of a focused set of biomarkers in urine and blood. Male rats administered a single dose or four doses of gentamicin (GM, 240 mg/kg/day) or a single dose of cisplatin (CDDP, 5 mg/kg) were euthanized on days 2 (the day after initial dosing) 5, or 12. At each time point, histopathological examination of the kidney and immunohistochemistry for biomarkers, kidney injury molecule-1 (Kim-1), lipocalin (NGAL), clusterin (CLU), cystatin C (CysC) and β2-microglobulin (β2M) were performed. Biomarker levels were measured in urine and blood. In both treatment groups, degenerated/necrotic proximal tubules and regenerated tubules were mainly observed on days 5 and 12, respectively. At the same time as these tubular injuries, urinary Kim-1, CysC and β2M levels were increased. Moreover, urinary levels of CysC and β2M in GM-treated animals and Kim-1 in CDDP-treated animals increased (on day 2) prior to tubular injury on day 5. This was considered to reflect the characteristics of drug toxicity. Although almost all of the biomarkers in blood were not sufficiently sensitive to detect proximal tubular injury, urinary and plasma β2M levels simultaneously increased. Therefore, in addition to urinary Kim-1, CysC and β2M levels, plasma β2M levels were also considered useful for detecting proximal tubular injury.
    Download PDF (8425K)
  • Derek E. Murrell, James W. Denham, Sam Harirforoosh
    2015 Volume 28 Issue 3 Pages 165-170
    Published: 2015
    Released: August 03, 2015
    [Advance publication] Released: June 05, 2015
    JOURNALS FREE ACCESS
    Nonsteroidal anti-inflammatory drugs (NSAIDs), non-selective or selective inhibitors of cyclooxygenase (COX-1 and -2), reduce pain and inflammation associated with arthritic diseases. Celecoxib, a COX-2-selective inhibitor providing decreased gastric injury relative to non-selective NSAIDs, is commonly prescribed. Misoprostol, a prostaglandin analog, supplements NSAID-inhibited prostaglandin levels. As concomitant celecoxib and misoprostol administration has been shown to intensify renal adverse effects, this article examined the influence of concomitant administration on hepatic histopathology, oxidative stress, and celecoxib concentration. On days 1 and 2, rat groups (n = 6) were gavaged twice daily (two groups with vehicle and two groups with 100 μg/kg misoprostol). From day 3 to day 9, one celecoxib dose (40 mg/kg) replaced a vehicle dose of one group and one group received celecoxib in addition to misoprostol. Livers were harvested on day 10. No hepatic abnormalities were observed denoting a lack of influence by either drug. Also no change in mean biomarker levels was detected. The changes in hepatic celecoxib concentration in the misoprostol-receiving group compared to control were not significant. Thus misoprostol does not influence hepatic celecoxib effects in terms of histopathology, oxidative stress, or celecoxib concentration level at the dosage and duration examined.
    Download PDF (2220K)
Case Reports
  • Takayasu Moroki, Tomo Sasaki, Katsuhiko Yoshizawa, Takaaki Doi
    2015 Volume 28 Issue 3 Pages 171-176
    Published: 2015
    Released: August 03, 2015
    [Advance publication] Released: May 22, 2015
    JOURNALS FREE ACCESS
    Pituicytoma is an extremely rare neoplasm derived from pituicytes, which are glial cells in the posterior lobe of the pituitary gland. A malignant pituicytoma was found in the intracranial cavity of a 55-week-old male Sprague-Dawley rat. Macroscopically, the tumor was located on the sphenoid bone and involved the pituitary gland. The tumor was composed of sheets of fusiform cells with spindle- or pleomorphic-shaped nuclei and abundant eosinophilic cytoplasms. The cells were arranged in a whirling or irregular growth pattern. Some tumor cells were bizarre multinucleated giant cells with cytoplasmic eosinophilic hyaline droplets. Many tumor cells were strongly positive for vimentin and glial fibrillary acidic protein, and some cells were positive for ED-1 and S-100. These findings closely resembled those of a giant cell glioblastoma derived from the pituitary gland, suggesting anaplastic pituicytoma. From our review of the literature, we believe this is the first report of a spontaneous malignant pituicytoma in a rodent.
    Download PDF (3589K)
  • Sydney Mukaratirwa, Claudio Petterino, Alys Bradley
    2015 Volume 28 Issue 3 Pages 177-180
    Published: 2015
    Released: August 03, 2015
    [Advance publication] Released: June 05, 2015
    JOURNALS FREE ACCESS
    A single mass was found on the left submandibular salivary gland at necropsy of a 15-month-old male commercially bred laboratory Beagle dog from a control dose group from a repeat toxicity study. Microscopically, the mass was composed of a well-demarcated area of coagulative necrosis surrounded and separated from the normal salivary gland tissue by a thick fibrovascular capsule. Necrosis was admixed with areas of hemorrhage, fibrin, edema, fibrinoid necrosis of the vascular tunica media, and thrombosis of small and large vessels. Within the necrotic tissue, there was marked ductal hyperplasia, and squamous metaplasia of duct and acinar epithelium. The mass was diagnosed as necrotizing sialometaplasia of the submandibular gland. Hyperplastic ductal elements and squamous metaplasia can be mistaken microscopically with squamous cell carcinoma. Therefore, pathologists should be aware of this lesion as to avoid errors in the diagnosis of this benign pathologic condition.
    Download PDF (2554K)
feedback
Top