詳細検索結果
以下の条件での結果を表示する:
全文: "Brain machine interface"
478件中 1-20の結果を表示しています
  • Wei WANG, Yuuki NISHI, Yuki SUGA, Shigeki SUGANO
    ロボティクス・メカトロニクス講演会講演概要集
    2010年 2010 巻 1A2-F09
    発行日: 2010年
    公開日: 2017/06/19
    会議録・要旨集 認証あり
    We developed a human in loop integration system for our wheelchair mounted robotic arm, with a brain machine interface utilized as the interacting device in an attempt to enable the aid for users with limited motion ability in activity of daily livings. In order to enable a reliable use of the brain machine interface, operation status of the manipulator are defined, an intelligent supportive module is also exploited, which utilizes neuronal signals dentification result and also face expression to generate an binarized command code input, that are then used to drive the transition between operation status of the manipulator. The corresponding motion control action will be executed due to the transition of operation status.
  • 牛場 潤一
    臨床神経学
    2011年 51 巻 11 号 927
    発行日: 2011年
    公開日: 2012/01/24
    ジャーナル フリー
  • 吉峰 俊樹, 柳沢 琢史, 平田 雅之
    臨床神経学
    2013年 53 巻 11 号 962-965
    発行日: 2013/11/01
    公開日: 2013/11/29
    ジャーナル フリー
    Brain-machine interface(BMI)とは,脳と機械の間で信号をやり取りすることにより失われた神経機能の代行や回復の促進に役立てようとするものである.とくにこの10年間の進歩はいちじるしく,臨床研究から実用化に向けた開発が進められている.その開発は神経学,基礎神経科学,情報科学ならびに多くの工学領域が融合した新しい産業分野の創設につながるものと考えられるが,一方では,研究の進歩により脳活動,とくに神経信号処理について新しい知見をもたらし,様々な神経疾患の病態解明にも役立ち,新しい治療モダリティーの開発につながるものと期待される.
  • 里宇 明元
    神経治療学
    2016年 33 巻 3 号 405
    発行日: 2016年
    公開日: 2016/11/10
    ジャーナル フリー
  • Takanori UCHIYAMA
    SICE Journal of Control, Measurement, and System Integration
    2014年 7 巻 6 号 313
    発行日: 2014年
    公開日: 2014/11/20
    ジャーナル フリー
  • 石丸 園子, 松井 まり子, 神保 直樹, 篠崎 亮
    生体医工学
    2015年 53 巻 Supplement 号 S110_03
    発行日: 2015年
    公開日: 2016/07/09
    ジャーナル フリー
    We have developed a sleepiness notice system during driving by measuring RR interval in order to prevent traffic accidents when drivers get to feel sleepy. A wireless small size electrocardiograph is used and it can measure RR interval. We have found that sleepiness is related to the continuous increase of RR interval, and as long as RR interval increases over the specific times and over the specific range continuously, drivers get to feel sleepy. At this time, this system notifies the driver who would meet to a risk with an alarm. This algorithm is incorporated into the sleepiness notice system. We examined the detective accuracy of sleepiness with 60 drivers in the field test, and could good results that sleepiness was detected with a high probability.
  • 篠崎 亮, 松井 太志
    生体医工学
    2015年 53 巻 Supplement 号 S110_02
    発行日: 2015年
    公開日: 2016/07/09
    ジャーナル フリー
    A compact-biological sensor, which measures cardiac cycle, 3-axis acceleration and body surface temperature of a human, was developed. The sensor's light weight, 13g including a battery, compact size 40.8 x 37.0 x 8.9mm, allows the sensor can be adhered directly to chest with a disposable electrode for measuring. The sensor has two modes, memory and wireless. Memory mode can store about 7 days' worth of the biological data for analysis after measurement. Wireless mode can monitor up to 10 people simultaneously. The sensor samples cardiac signals using an A/D converter, detecting R waves from the signal, to obtain R-R intervals (RRIs) as the cardiac cycle. The RRIs have a time resolution of 1ms for sampling at 1kHz and 10bit. The standard deviation (SD) of the RRIs was 2.4ms in an experiment using a test signal. Therefore, the accuracy of the RRIs is enough to analyze HRV. In this case of HRV analysis we investigated fluctuations of the RRIs under atrial fibrillation (AF). The difference of SDs in successive RRIs (δRRI) in AF and sinus rhythm, were 341ms and 49.7ms respectively. Because of the large difference in the SDs, AF is expected to diagnose only the RRIs.
  • 塚田 信吾
    生体医工学
    2015年 53 巻 Supplement 号 S110_01
    発行日: 2015年
    公開日: 2016/07/09
    ジャーナル フリー
    We have developed textile electrodes which offer a sustainable monitoring of bioelectrical signals such as ECG EMG EEG. Combined material of electro-conductive polyelectrolyte, PEDOT-PSS and silk fibers was originally processed for chronically implanted brain machine interface. This material is excellent in biocompatibility and electroconductivity for implanted electrodes to record neural spikes in the rat's brain cortex. To make textile electrodes which have sufficient durability, base fiber was switched from silk to extra fine synthetic fiber (nanofiber φ 700nm). The fabric, named “hitoe” has air permeability, soft texture and sufficient durability as conventional underwear, including repeatedly use and machine washing. Nanofiber combined textile electrode reduced skin-electrode impedance and minimized skin irritation in long term monitoring. The electrodes, placed inside the undershirts and connected to wireless bio-signal amplifiers, enable to use general user and reduced the stress to the subjects. Biosignals, heart rate and its variability recorded from “hitoe”, elucidates the long-term life style information including autonomic nerve function and physical activity.
  • The Japanese Journal of Rehabilitation Medicine
    2010年 47 巻 2 号 75-104
    発行日: 2010/02/18
    公開日: 2010/03/03
    ジャーナル フリー

     
    Brain Machine Interface 研究の方向性とリハビリテーション…里宇 明元 75

    頭皮脳波を用いたBrain Machine Interface のリハビリテーション応用…牛場 潤一 79

    低侵襲的Brain Machine Interface—リハビリテーションに何をもたらすか—…吉峰 俊樹,平田 雅之,柳澤 琢史,後藤  哲,松下光次郎,齋藤 洋一,福間 良平,神谷 之康,横井 浩史 83

    個性適応型情報処理を用いたロボット制御とその応用…横井 浩史,加藤  龍 88

    Brain Machine Interface:基礎神経科学から臨床応用へ…伊佐  正 98
  • 三原 雅史
    臨床神経学
    2011年 51 巻 11 号 924-926
    発行日: 2011年
    公開日: 2012/01/24
    ジャーナル フリー
    Recent advance in Brain-Machine interface (BMI) technology, including analysis of brain signal, enable a real-time interaction between patients and environment bypassing their damaged neuromuscular systems. Although most of researches have focused on substituting output function, it has been growing interest in applying this technology for restoring their brain. Several studies have proved that feedback of cortical activities (neurofeedback) enable regulating brain activation voluntarily. According to this notion, we have developed a real-time neurofeedback system mediated by near-infrared spectroscopy (NIRS) as a neurofeedback tool in neurorehabilitation. First, we have evaluated whether real-time cortical oxygenated hemoglobin (OxyHb) feedback signals correlated with reference OxyHb signals analyzed off-line during a motor execution task. Our results showed high correlation between results from two analyses. Second, we investigated whether the self-assessment scores for kinesthetic motor imagery and motor imagery related cortical activation was enhanced by neurofeedback. Our experiment with right handed healthy subjects revealed significant improvement of the imagery scale, and enhanced cortical activations including the contralateral premotor area. These results suggest that the neurofeedback technique may improve the efficacy of mental practice with motor imagery.
  • 吉岡 将孝
    前橋工科大学研究紀要
    2017年 20 巻 61-62
    発行日: 2017年
    公開日: 2018/03/14
    研究報告書・技術報告書 オープンアクセス
    Brain-machine interfaces (BMIs) are technologies that allow humans to interact with artificial devices. To support daily life by BMIs, it is necessary to reconstruct the motion information by measured EEGs signals. Our purpose is to estimate the force/torque information from the brain activity to help and support the human's daily life. In this study, we analyze the electroencephalogram(EEG) signals in movement to extract the relationship between EEG and muscle activity signals, and further estimate the joint torque from the EEG. In order to extract the relationship between EEGs and elbow joint torque when a subject controls the robot arm, the features of the EEGs related to motion are extracted by twice short-time Fourier transform. As the result of the analysis, periodicity of alpha and beta wave variation at each measurement point has a strong association with subject's movement. Based on this, we model the relationship between EEG and muscle activity by principal component analysis, and the results show that it is possible to estimate muscle activity from EEG.
  • 石崎 晴也, 滝沢 賢一, 鈴木 隆文, 安藤 博士
    生体医工学
    2018年 Annual56 巻 Abstract 号 S302
    発行日: 2018年
    公開日: 2018/09/14
    ジャーナル フリー

    大脳皮質に発生する信号を四肢の運動情報へデコードし、体外の機器を制御することにより運動機能等の障害のある患者を補助するBrain-Machine Interface(BMI)の開発が進められている。ここで、神経活動を正確に読み取るため、皮質表面の電極チャネルを数千個程度の高密度で設置することが望ましいが、体外へこれらのデータを伝送する上で、無線LANを上回る100Mbpsを超える通信速度が必要となる。さらに患者QOLの向上を図るためには、これらのデータ伝送を無線で行い、かつ消費電力も体温や周辺電波など微量の環境発電で賄える程度まで削減してバッテリレスとし、電池交換の手間も省く必要がある。このたび、BMI専用ハードウェアに特化した高速バッテリレス無線として、Suicaなど非接触通信で用いられているバックスキャッタ伝送の広帯域化に取り組み、高密度変調と適応波形補償を併せた新規広帯域バックスキャッタ伝送技術を開発し、試作基板の評価結果から無線LAN(IEEE802.11b)伝送速度を上回る15Mbpsでのバッテリレス無線伝送実証に世界で初めて成功した。本技術はシミュレーションによる理論予測とも一致し、設計制御性が高いため、カプセル内視鏡など動画伝送を含む将来的な体内体外伝送にも、広く低コストで展開することが可能である。

  • 山崎 まどか
    生体医工学
    2017年 55Annual 巻 4PM-Abstract 号 355
    発行日: 2017年
    公開日: 2017/09/13
    ジャーナル フリー

    脳波は脳の神経活動に伴う電気信号を直接とらえる測定手法で、1929年にHans Bergerがヒトの脳波記録を報告して以来、脳神経疾患の診断などの臨床だけでなく、Brain machine interfaceなど医工学分野でも応用利用されている。脳波は非侵襲的ミリ秒の優れた時間分解を持つ脳機能測定法であるが、通常の臨床脳波で用いる20個の電極からの記録では空間分解能が5-10cmであり、空間分解能が低いため、臨床での利用がほとんどであった。正確な脳機能測定を行うには電極間距離は3cm以下が望ましい(Spitzerら 1989)とされ、Srinivasanらはこれを実現するには128個以上の電極が必要と報告している。しかしながら2000年代に入り、装着を簡便にした100個以上の電極を備えた高密度脳波が登場し、空間分解能が数cm以下となった。時間と空間の両分解能を高めた脳機能測定法として再び注目を集めている。本講演では高密度脳波測定法とその解析法と、その臨床応用として、てんかん患者におけるてんかん性放電の高密度脳波による信号源推定を提示する。また、非侵襲的脳機能測定法について議論していきたい。

  • 臼井 支朗
    生体医工学
    2015年 53 巻 Supplement 号 S146_03
    発行日: 2015年
    公開日: 2016/07/09
    ジャーナル フリー
    In order to facilitate further understanding of the brain, we need an infrastructure to share the efforts such as sharing experimental data, analysis tools and computational models in interdisciplinary field. The Neuroinformatics (NI) Team established in April 2002 at RIKEN BSI aiming for the development of the Japanese NI and opened the “Visiome Platform”, the first public NI platform in Japan developed by the “NI Research in Vision” project (PI: S. Usui, 1999-2004). Meanwhile, the INCF was established in 2005, following the recommendation of the OECD MegaScience Forum. The NIJC (NI Japan Center) was then opened at RIKEN BSI as the INCF Japan-node. To further facilitate and encourage utilization of the NI databases, we developed a cloud-based “Simulation Platform”. This allows users to test more than hundreds of models with just a web browser. To construct a large scale model, the tested models can also be connected using a model integration environment called “PLATO”. As an application of the PLATO, we have developed a large scale visual system model on the K-computer. We believe that these achievements contribute to the next generation of neuroscience research including Medical and Biological Engineering.
  • 神作 憲司
    生体医工学
    2015年 53 巻 Supplement 号 S146_02
    発行日: 2015年
    公開日: 2016/07/09
    ジャーナル フリー
    The Brain-Machine Interface (BMI) is an interface technology that utilizes neurophysiological signals from the brain to control external machines or computers. We have developed EEG-based BMI systems. We first applied the P300 paradigm for communication and environmental control. We prepared a green/blue flicker matrix, and showed that the new matrix was associated with a better subjective feeling of comfort than was the conventional white/gray flicker matrix, and we also found that the new matrix was associated with better performance (Takano, et al., 2009). We also prepared a steady-state visual evoked potential-based BMI using flickering visual stimuli at frequencies greater than the critical flicker frequency (Sakurada, et al., in press). For clinical purposes, we have developed an in-house environmental control system. We also developed peripheral devices: a non-adhesive solid-gel EEG electrode (Toyama, et al., 2012) and a soft cap with electrode holders. The BMI system was successfully operated by patients with amyotrophic lateral sclerosis (Ikegami, et al., 2014). Researches along these lines may help persons with disabilities to expand the range of activities.
  • 岩木 直
    生体医工学
    2015年 53 巻 Supplement 号 S146_01
    発行日: 2015年
    公開日: 2016/07/09
    ジャーナル フリー
    The gamma-band activities in the parietal and the visual cortices play a crucial role in manipulating mental representation of 3-D objects. However, it is not fully characterized whether individual changes in the gamma-band activity are correlated with the individual difference in the performance of mental image processing required both during the cognitive task in the lab setting and during the everyday life such as vehicle driving. Here, we measured EEG responses during the 3-D mental rotation task. The subjects' performance of vehicle driving was also evaluated in the simulated environment.Increase in 30 Hz gamma-band power at the occipital and the superior parietal areas were significantly correlated with the mental rotation task performance, which suggests that the efficient binding of visual features represented in these regions leads to better performance. Also, the gamma-band power was significantly correlated with the performance of vehicle driving as evaluated by stability of lane keeping under lower visibility condition. The findings suggest the possibility of predicting the driving capability from the cognitive task performance corrected offline.
  • John Daly, Erin Purcell, Ali Mohebi, Marissa Zoratti, Karim Oweiss
    生体医工学
    2013年 51 巻 Supplement 号 M-74
    発行日: 2013年
    公開日: 2013/09/06
    ジャーナル フリー
  • 西村 幸男
    臨床神経学
    2011年 51 巻 11 号 923
    発行日: 2011年
    公開日: 2012/01/24
    ジャーナル フリー
  • 吉田 旭宏, 山本 遼, 小林 真介, 法山 智顕, 中井 敏晴, 國見 充展, 木山 幸子, 礒田 治夫
    生体医工学
    2015年 53 巻 Supplement 号 S161_03
    発行日: 2015年
    公開日: 2016/07/09
    ジャーナル フリー
    Cognitive decline in task switching may cause serious accidents especially in older adults. We evaluated the potential utility of a new task switching paradigm using color/shape and phone/letters to investigate the effect of aging on the brain activity using fMRI. Seventeen young and 15 older subjects participated in this study. Behavioral data analysis (ANOVA, p<0.05) revealed that the switching cost (SC) of color/shape paradigm was significantly higher than that of phone/letter paradigm in older adults, and the SC of older adults was also higher than that of young subjects in color/shape paradigm. The mixing cost (MC) of color/shape paradigm was significantly higher than that of phone/letter paradigm in both groups. Functional image analysis using SPM8 (p<0.001, uncorrected) revealed the significant activations in bilateral BA 32, 40 and 46 in both age group. Contrast result of two-sample T test for young minus older shows significant differences in the bilateral DLPFC including BA 46. These results suggested that the frontal-parietal network declines depending on aging. Focusing on these areas, this study might be useful for detecting the effects of aging on task switching function in the clinical setting.
  • バガリナオ エピファニオ, 前澤 聡, 渡辺 宏久, 森 大輔, 中井 敏晴, 磯田 治夫, 祖父江 元
    生体医工学
    2015年 53 巻 Supplement 号 S161_02
    発行日: 2015年
    公開日: 2016/07/09
    ジャーナル フリー
    Real-time functional MRI is a non-invasive technique that enables the real-time analysis of brain activation patterns. Coupled with machine learning algorithms such as support vector machines (SVM), it can be used to identify different brain states in real-time. In this work, we developed a real-time brain state decoder system. In our implementation, image volumes were immediately reconstructed after acquisition, then transferred over the network to an analysis server where the images were immediately processed and the brain state decoded using pre-trained SVMs. We also explored the feasibility of using the system as a brain machine interface (BMI). For this, we scanned two participants and asked them to control the movement of an arrow displayed on a projection screen by matching their ongoing brain activity to a pre-defined activation pattern. Only a correct match, determined by the SVM, would move the arrow. The system attained an overall processing time per image volume that is less than the scan repetition time set at 2s. Moreover, participants were able to successfully control the arrow's movement demonstrating the feasibility of the system as a BMI.
feedback
Top