Journal of Oleo Science
Online ISSN : 1347-3352
Print ISSN : 1345-8957
ISSN-L : 1345-8957
General Subjects
Phosphoric Acid Triester Micelles: Characterization and Self-Assembly
Yuto YokoyamaKimiko MakinoHiroshi TeradaAkihiko KikuchiIssei TakeuchiKolio Troev
著者情報
ジャーナル オープンアクセス
電子付録

2023 年 72 巻 10 号 p. 969-977

詳細
抄録

In this study, we analyzed the properties of amphiphilic alkyldi(methoxy poly(ethylene glycol) (MePEG)350-lactate) phosphates based on ethyl lactate, the monomethyl ether of poly(ethylene glycol)350, and alkyldichloro phosphates. Interestingly, these triesters combine two biodegradable bonds, -P(O)-O-C and -C(O)-O-C-, and include hydrophilic (MePEG350-lactate) and hydrophobic (R-aliphatic chain of alcohols) moieties. The properties of these esters resemble those of phospholipids. After being placed in an aqueous solution, they self-assembled. We also determined the effects of ester composition on micelle formation, stability, and size using dynamic light scattering. Solubilization tests using Sudan III or doxorubicin hydrochloride (Dox·HCl) revealed that they could be incorporated into the hydrophobic cores of dodecyl di(MePEG350-lactate) phosphate and hexadecyl di(MePEG350-lactate) phosphate. Notably, dodecyl di(MePEG350-lactate) phosphate was stable for five days, whereas hexadecyl di(MePEG350-lactate) phosphate was stable for seven days in phosphate-buffered saline. Moreover, Dox·HCl release rates from the micelles were approximately 30-40, 70-80, and 90-100% after 1, 5, and 28 d, respectively.

supporting information Fullsize Image
著者関連情報
© 2023 by Japan Oil Chemists' Society

This article is licensed under a Creative Commons [Attribution 4.0 International] license.
https://creativecommons.org/licenses/by/4.0/
前の記事 次の記事
feedback
Top