In flooded rice fields, methanogenic archaea produce CH
4, while methanotrophic bacteria oxidize a part of the produced CH
4. Thus, the latter bacteria are considered as suitable organisms for controlling CH
4 emission from paddy fields. In this paper, the author demonstrates a case of organic matter application, enumeration and isolation of methanogenic archaea and methanotrophic bacteria in a subtropical paddy field. The rice rhizosphere is one of the typical areas where anaerobic and aerobic environments interface, methanogens produce CH
4 and methanotrophs utilize it for energy. Although how they interact in the anaerobic and aerobic interfaces is an attractive research area, it has not yet been fully elucidated, because a two-member co-culture of methanogen and methanotroph is not well developed. Co-culture of a strictly anaerobic methanogenic archaeon and an obligately aerobic methanotrophic bacterium using sterilized paddy soil was carried out. The rice root system affects CH
4 production and oxidation in the rice rhizosphere, and its influence varies with different rice cultivars. Rice cultivars with few unproductive tillers, a small root system, high root oxidative activity, and high harvest index are ideal for mitigating CH
4 emission in paddy fields.
View full abstract