Microbes and Environments
Online ISSN : 1347-4405
Print ISSN : 1342-6311
ISSN-L : 1342-6311
Volume 34, Issue 3
Displaying 1-15 of 15 articles from this issue
Research Highlight
Regular Papers
  • Régis Rouzé, Anne Moné, Frédéric Delbac, Luc Belzunces, Nicolas Blot
    Article type: Regular Papers
    2019 Volume 34 Issue 3 Pages 226-233
    Published: 2019
    Released on J-STAGE: September 25, 2019
    Advance online publication: August 03, 2019
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    The gut of the European honeybee Apis mellifera is the site of exposure to multiple stressors, such as pathogens and ingested chemicals. Therefore, the gut microbiota, which contributes to host homeostasis, may be altered by these stressors. The abundance of major bacterial taxa in the gut was evaluated in response to infection with the intestinal parasite Nosema ceranae or chronic exposure to low doses of the neurotoxic insecticides coumaphos, fipronil, thiamethoxam, and imidacloprid. Experiments were performed under laboratory conditions on adult workers collected from hives in February (winter bees) and July (summer bees) and revealed season-dependent changes in the bacterial community composition. N. ceranae and a lethal fipronil treatment increased the relative abundance of both Gilliamella apicola and Snodgrassella alvi in surviving winter honeybees. The parasite and a sublethal exposure to all insecticides decreased the abundance of Bifidobacterium spp. and Lactobacillus spp. regardless of the season. The similar effects induced by insecticides belonging to distinct molecular families suggested a shared and indirect mode of action on the gut microbiota, possibly through aspecific alterations in gut homeostasis. These results demonstrate that infection and chronic exposure to low concentrations of insecticides may affect the honeybee holobiont.

  • Orsolya Gazdag, Ramóna Kovács, István Parádi, Anna Füzy, László Ködöbö ...
    Article type: Regular Papers
    2019 Volume 34 Issue 3 Pages 234-243
    Published: 2019
    Released on J-STAGE: September 25, 2019
    Advance online publication: June 13, 2019
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    The influence of organic and conventional farming and agroecology on the diversity and functioning of indigenous soil microbial communities was examined using a multifactorial analysis based on an extended minimum data set of classical status and functional tests. Main soil physicochemical properties and selected microbiological indicators, the quantity of heterotrophic or aerobic spore-forming bacteria, basal and substrate-induced respiration, catabolic activity with MicroResp, and fluorescein diacetate enzyme activity were characterized. A pot experiment applying the most probable number method was designed with soil dilution series using Pisum sativum L. and Triticum spelta L. to assess the symbiotic infectivity and genetic diversity of key indicator groups of the plant microbiome, e.g. nitrogen-fixing bacteria (rhizobia) and arbuscular mycorrhizal fungi. Soil pH, humus content, CFU, enzyme activity, and soil respiration were significantly higher in organic soils. The activity of soil microorganisms was mainly related to clay, humus, calcium, and magnesium parameters. A redundancy analysis test of catabolic activities showed that samples were grouped according to different substrate utilization patterns and land uses were also clearly separated from each other. Farming practice influenced the abundance and diversity of microbial populations. Dark septate endophytic fungi were only found in conventional soils. In addition to confirming soil health improvements by organic management, our results highlight the importance of a complex evaluation including both classical status and functional parameters of soil microbiota, which may more reliably indicate a shift in the quality status of soils.

  • Kana Sumikawa, Tomoyuki Kosaka, Noriaki Mayahara, Minenosuke Matsutani ...
    Article type: Regular Papers
    2019 Volume 34 Issue 3 Pages 244-251
    Published: 2019
    Released on J-STAGE: September 25, 2019
    Advance online publication: June 13, 2019
    JOURNAL OPEN ACCESS FULL-TEXT HTML

    The thermophilic hydrogenotrophic methanogen, Methanothermobacter sp. CaT2, which possesses an extracellular sugar layer, commonly aggregates by itself or with other microorganisms. To elucidate the molecular mechanisms responsible for this aggregation, the aggregation-defective mutant, CLA160, was isolated. Optical and electron microscopy observations revealed that the mutant exhibited a significant reduction in aggregation. Genomic sequencing showed that CLA160 has a single point mutation, causing a nonsense mutation in MTCT_1020, which encodes a hypothetical protein. Motif and domain analyses indicated that the hypothetical protein bears two membrane-spanning segments at the N- and C-terminal regions and a large middle repeat-containing region. The results of a bioinformatic analysis suggested that the first middle region (RII) of the protein or the whole structure is responsible for the function of the product of MTCT_1020 in the aggregation of CaT2. A treatment with proteinase K suppressed sedimentation in CaT2, indicating a reduction in aggregation, with almost no effect on sedimentation in CLA160. The addition of Ca2+ or Mg2+ ions enhanced sedimentation in CaT2, whereas a DNase treatment had no effect on sedimentation in either strain. These results suggest that the hypothetical protein encoded by MTCT_1020 plays a key role as a membrane-bound adhesion protein in the aggregation of CaT2, which is enhanced by the addition of Ca2+ or Mg2+ ions.

  • Kota Watanabe, Eiji Nishi, Yukihiro Tashiro, Kenji Sakai
    Article type: Regular Papers
    2019 Volume 34 Issue 3 Pages 252-259
    Published: 2019
    Released on J-STAGE: September 25, 2019
    Advance online publication: June 20, 2019
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    Bacterial communities on various parts of the human body are distinct. We were the first to report the existence of a stable bacterial community on human scalp hair and demonstrated that an analysis of its structure by terminal restriction fragment length polymorphism (T-RFLP) is helpful for individual discrimination. However, the ecology of the bacterial community on human scalp hair has not yet been elucidated in detail. We herein investigated the mode, quantity, and phylogeny of bacterial communities on the human hair shaft and root and showed the results obtained from one representative individual. Direct SEM observations of hair, without a pretreatment, confirmed the ubiquitous presence of bacteria-like coccoids and rods on the shaft and root of hair from the human scalp, with 105–106 cells cm−2 of hair and 107 cells cm−2 of hair, respectively. These values corresponded to the 16S rRNA gene copy numbers obtained by qPCR. These numbers were not significantly affected by detergent washing. These results represented those obtained from many individuals with different hair lengths, ages, and gender. The major OTUs on the human scalp hair shaft and root were the same and included two species of Pseudomonas (phylum Proteobacteria), Cutibacterium and Lawsonella (phylum Actinobacteria), and Staphylococcus (phylum Firmicutes). These results suggest that major bacteria on the human hair shaft are indigenous and derived from the hair root.

  • Cristina Sánchez, Arthur Fernandes Siqueira, Hisayuki Mitsui, Kiwamu M ...
    Article type: Regular Papers
    2019 Volume 34 Issue 3 Pages 260-267
    Published: 2019
    Released on J-STAGE: September 25, 2019
    Advance online publication: June 28, 2019
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    The soybean symbiont Bradyrhizobium diazoefficiens grows anaerobically in the presence of nitrate using the denitrification pathway, which involves the nap, nir, nor, and nos genes. We previously showed that NasT acts as a transcription antitermination regulator for nap and nos gene expression. In the present study, we investigated the targets of NasT in B. diazoefficiens during denitrifying growth by performing transcription profiling with RNA-seq and quantitative reverse-transcription PCR. Most of the genes with altered expression in the absence of NasT were related to nitrogen metabolism, specifically several systems for branched-chain amino acid transport. The present results suggest that the reduced expression of genes involved in nitrogen acquisition leads to the induction of alternative sets of genes with similar functions. The ΔnasT mutant of B. diazoefficiens grew better than the wild type under denitrifying conditions. However, this enhanced growth was completely abolished by an additional loss of the narK or bjgb genes, which encode cytoplasmic systems for nitrite and nitric oxide detoxification, respectively. Since the expression of narK and bjgb was increased in the ΔnasT mutant, the growth of the ΔnasT mutant may be promoted by increased detoxification activity.

  • Annisa N. Lathifah, Yong Guo, Nobuo Sakagami, Wataru Suda, Masanobu Hi ...
    Article type: Regular Papers
    2019 Volume 34 Issue 3 Pages 268-277
    Published: 2019
    Released on J-STAGE: September 25, 2019
    Advance online publication: July 20, 2019
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    Microbial colonization, followed by succession, on newly exposed volcanic substrates represents the beginning of the development of an early ecosystem. During early succession, colonization by mosses or plants significantly alters the pioneer microbial community composition through the photosynthetic carbon input. To provide further insights into this process, we investigated the three-year-old volcanic deposits of Mount Merapi, Indonesia. Samples were collected from unvegetated (BRD) and moss-covered (BRUD) sites. Forest site soil (FRS) near the volcanic deposit-covered area was also collected for reference. An analysis of BRD and BRUD revealed high culturable cell densities (1.7–8.5×105 CFU g−1) despite their low total C (<0.01%). FRS possessed high CFU (3×106 g−1); however, its relative value per unit of total C (2.6%) was lower than that of the deposit samples. Based on the tag pyrosequencing of 16S rRNA genes, the BRD bacterial community was characterized by a higher number of betaproteobacterial families (or genus), represented by chemolithotrophic Methylophilaceae, Leptothrix, and Sulfuricellaceae. In contrast, BRUD was predominated by different betaproteobacterial families, such as Oxalobacteraceae, Comamonadaceae, and Rhodocyclaceae. Some bacterial (Oxalobacteraceae) sequences were phylogenetically related to those of known moss-associated bacteria. Within the FRS community, Proteobacteria was the most abundant phylum, followed by Acidobacteria, whereas Burkholderiaceae was the most dominant bacterial family within FRS. These results suggest that an inter-family succession of Betaproteobacteria occurred in response to colonization by mosses, followed by plants.

  • Lewis M. Ward, Airi Idei, Mayuko Nakagawa, Yuichiro Ueno, Woodward W. ...
    Article type: Regular Papers
    2019 Volume 34 Issue 3 Pages 278-292
    Published: 2019
    Released on J-STAGE: September 25, 2019
    Advance online publication: August 14, 2019
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    Hydrothermal systems, including terrestrial hot springs, contain diverse geochemical conditions that vary over short spatial scales due to progressive interactions between reducing hydrothermal fluids, the oxygenated atmosphere, and, in some cases, seawater. At Jinata Onsen on Shikinejima Island, Japan, an intertidal, anoxic, iron-rich hot spring mixes with the oxygenated atmosphere and seawater over short spatial scales, creating diverse chemical potentials and redox pairs over a distance of ~10 m. We characterized geochemical conditions along the outflow of Jinata Onsen as well as the microbial communities present in biofilms, mats, and mineral crusts along its traverse using 16S rRNA gene amplicon and genome-resolved shotgun metagenomic sequencing. Microbial communities significantly changed downstream as temperatures and dissolved iron concentrations decreased and dissolved oxygen increased. Biomass was more limited near the spring source than downstream, and primary productivity appeared to be fueled by the oxidation of ferrous iron and molecular hydrogen by members of Zetaproteobacteria and Aquificae. The microbial community downstream was dominated by oxygenic Cyanobacteria. Cyanobacteria are abundant and active even at ferrous iron concentrations of ~150 μM, which challenges the idea that iron toxicity limited cyanobacterial expansion in Precambrian oceans. Several novel lineages of Bacteria are also present at Jinata Onsen, including previously uncharacterized members of the phyla Chloroflexi and Calditrichaeota, positioning Jinata Onsen as a valuable site for the future characterization of these clades.

  • Shingo Kato, Shinsaku Nakano, Mariko Kouduka, Miho Hirai, Katsuhiko Su ...
    Article type: Regular Papers
    2019 Volume 34 Issue 3 Pages 293-303
    Published: 2019
    Released on J-STAGE: September 25, 2019
    Advance online publication: August 03, 2019
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    Candidatus Hydrothermarchaeota, formally called Marine Benthic Group E, has often been detected in iron- and sulfur-rich marine environments, such as hydrothermal vents and cold seeps. However, their ecology and physiology remain unclear. Cultivated representatives of this group are still lacking and only several metagenome-assembled genomes (MAGs) and single-amplified genomes (SAGs) are available from two deep-sea hydrothermal areas, the Juan de Fuca Ridge (JdFR) and Guaymas Basin (GB), in the north-east Pacific. We herein report four MAGs of Ca. Hydrothermarchaeota recovered from hydrothermally-inactive metal sulfide deposits at the Southern Mariana Trough (SMT) in the north-west Pacific. A phylogenetic analysis indicated that the MAGs of the SMT were distinct from those of the JdFR and GB at the genus or potentially family level. Ca. Hydrothermarchaeota MAGs from the SMT commonly possessed putative genes for carboxydotrophic and hydrogenotrophic respiration using oxidized chemical species of sulfur as electron acceptors and also for carbon fixation, as reported previously in MAGs/SAGs from the JdFR and GB. This result strongly supports Ca. Hydrothermarchaeota containing anaerobic chemolithoautotrophs using carbon monoxide and/or hydrogen as electron donors. A comparative genome analysis highlighted differences in the capability of nitrogen fixation between MAGs from the SMT and the other fields, which are consistent with environmental differences in the availability of nitrogen sources for assimilation between the fields. Based on the wide distribution in various areas, abundance, and metabolic potential of Ca. Hydrothermarchaeota, they may play a role in the biogeochemical cycling of carbon, nitrogen, sulfur, and iron in marine environments, particularly in deep-sea hydrothermal fields.

  • Nanako Kanno, Shin Haruta, Satoshi Hanada
    Article type: Regular Papers
    2019 Volume 34 Issue 3 Pages 304-309
    Published: 2019
    Released on J-STAGE: September 25, 2019
    Advance online publication: August 08, 2019
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    Chloroflexus aggregans is a thermophilic filamentous anoxygenic phototrophic bacterium frequently found in microbial mats in natural hot springs. C. aggregans often thrives with cyanobacteria that engage in photosynthesis to provide it with an organic substrate; however, it sometimes appears as the dominant phototroph in microbial mats without cyanobacteria. This suggests that C. aggregans has the ability to grow photoautotrophically. However, photoautotrophic growth has not been observed in any cultured strains of C. aggregans. We herein attempted to isolate a photoautotrophic strain from C. aggregansdominated microbial mats in Nakabusa hot spring in Japan. Using an inorganic medium, we succeeded in isolating a new strain that we designated “ACA-12”. A phylogenetic analysis based on 16S rRNA gene and 16S-23S rRNA gene internal transcribed spacer (ITS) region sequences revealed that strain ACA-12 was closely related to known C. aggregans strains. Strain ACA-12 showed sulfide consumption along with autotrophic growth under anaerobic light conditions. The deposited elemental sulfur particles observed by microscopy indicated that sulfide oxidation occurred, similar to that in photoautotrophic strains in the related species, C. aurantiacus. Moreover, we found that other strains of C. aggregans, including the type strain, also exhibited a slight photoautotrophic growing ability, whereas strain ACA-12 showed the fastest growth rate. This is the first demonstration of photoautotrophic growth with sulfide in C. aggregans. The present results strongly indicate that C. aggregans is associated with inorganic carbon incorporation using sulfide as an electron donor in hot spring microbial mats.

  • Zhongbao Zhang, Longfei Yin, Xianglong Li, Chun Zhang, Huawen Zou, Cai ...
    Article type: Regular Papers
    2019 Volume 34 Issue 3 Pages 310-315
    Published: 2019
    Released on J-STAGE: September 25, 2019
    Advance online publication: August 23, 2019
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    Bacillus pumilus ZB201701 is a rhizobacterium with the potential to promote plant growth and tolerance to drought and salinity stress. We herein present the complete genome sequence of the Gram-positive bacterium B. pumilus ZB201701, which consists of a linear chromosome with 3,640,542 base pairs, 3,608 protein-coding sequences, 24 ribosomal RNAs, and 80 transfer RNAs. Genome analyses using bioinformatics revealed some of the putative gene clusters involved in defense mechanisms. In addition, activity analyses of the strain under salt and simulated drought stress suggested its potential tolerance to abiotic stress. Plant growth-promoting bacteria-based experiments indicated that the strain promotes the salt tolerance of maize. The complete genome of B. pumilus ZB201701 provides valuable insights into rhizobacteria-mediated salt and drought tolerance and rhizobacteria-based solutions for abiotic stress in agriculture.

  • Takashi Kushida, Issay Narumi, Sonoko Ishino, Yoshizumi Ishino, Shinsu ...
    Article type: Regular Papers
    2019 Volume 34 Issue 3 Pages 316-326
    Published: 2019
    Released on J-STAGE: September 25, 2019
    Advance online publication: July 27, 2019
    JOURNAL OPEN ACCESS FULL-TEXT HTML

    Thermococcus kodakarensis possesses two DNA polymerases, Pol B and Pol D. We generated a T. kodakarensis strain (DPB1) in which polB was completely deleted and a derivative of DPB1 in which polB was overexpressed; neither of the generated strains exhibited any growth delay, indicating that the lack or overexpression of Pol B in T. kodakarensis did not affect cell growth. We also found that DPB1 showed higher sensitivity to four DNA-damaging agents (ultraviolet C irradiation, γ-ray irradiation, methyl methanesulfonate, and mitomycin C) than the parental strain. The sensitivity of DPB1 was restored to the level of the parent strain by the introduction of a plasmid harboring polB, suggesting that the DNA damage-sensitive phenotype of DPB1 was due to the loss of polB. Collectively, these results indicate that Pol B is involved in DNA repair, but not DNA replication, which, in turn, implies that Pol D is the sole replicative DNA polymerase in Thermococcus species.

  • Rifa Atunnisa, Tatsuhiro Ezawa
    Article type: Regular Papers
    2019 Volume 34 Issue 3 Pages 327-333
    Published: 2019
    Released on J-STAGE: September 25, 2019
    Advance online publication: August 14, 2019
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    Arbuscular mycorrhizal (AM) fungi play a significant role in the establishment and resilience of vegetation in harsh environments, such as volcanic slopes, in which soil is frequently disturbed by ash falling and erosion. We characterized AM fungal communities associated with a pioneer grass in a volcanic slope based on the disturbance tolerance of the fungi, addressing the hypothesis that soil disturbance is a major ecological filter for AM fungi in volcanic ecosystems and, thus, fungi that are more tolerant to soil disturbance are selected at higher elevations (i.e. nearer to the crater). Paired soil-core samples were collected from the rhizosphere of Miscanthus sinensis between the vegetation limit and forest limit on a volcanic slope and used in a trap culture with M. sinensis seedlings, in which one of the paired samples was sieved to destroy hyphal networks (disturbance treatment), while the other was not (intact treatment). Seedlings were grown in a greenhouse for two months, and the roots were subjected to molecular analysis of fungal communities. AM fungal diversity decreased with increasing elevations, in which nested structure was observed. Community dissimilarity between the disturbed and intact communities decreased with increasing elevations, suggesting that communities at higher elevations were more robust against soil disturbance. These results suggest that AM fungi that are more tolerant to soil disturbance are more widely distributed across the ecosystem, that is, they are generalists. The wide distribution of disturbance-tolerant fungi may have significant implications for the rapid resilience of vegetation after disturbance in the ecosystem.

Short Communications
  • Yanze Li, Hisashi Endo, Yasuhiro Gotoh, Hiroyasu Watai, Nana Ogawa, Ro ...
    Article type: Short Communication
    2019 Volume 34 Issue 3 Pages 334-339
    Published: 2019
    Released on J-STAGE: September 25, 2019
    Advance online publication: August 03, 2019
    JOURNAL OPEN ACCESS FULL-TEXT HTML

    Giant viruses of ‘Megaviridae’ have the ability to widely disperse around the globe. We herein examined ‘Megaviridae’ communities in four distinct aquatic environments (coastal and offshore seawater, brackish water, and hot spring freshwater), which are distantly located from each other (between 74 and 1,765 km), using a meta-barcoding method. We identified between 593 and 3,627 OTUs in each sample. Some OTUs were detected in all five samples tested as well as in many of the Tara Oceans metagenomes, suggesting the existence of viruses of this family in a wide range of habitats and the ability to circulate on the planet.

  • Hayato Shiragane, Toshiyuki Usami, Masahiro Shishido
    Article type: Short Communication
    2019 Volume 34 Issue 3 Pages 340-343
    Published: 2019
    Released on J-STAGE: September 25, 2019
    Advance online publication: June 20, 2019
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    Rosellinia necatrix causes white root rot in various plants, including the Japanese pear. PCR assays using specific primers for R. necatrix detected the fungus on the roots of nine weed species from infested pear orchards. The soil inoculation experiment revealed that the spread of R. necatrix was similar between weed-mowed and non-weed-mowed treatments under field conditions. The spread of R. necatrix was also observed when rescue grass (Bromus catharticus) was grown in planter boxes under greenhouse conditions, but was limited without the grass, suggesting that some weeds facilitate the spread of R. necatrix in soil.

feedback
Top