Microbes and Environments
Online ISSN : 1347-4405
Print ISSN : 1342-6311
ISSN-L : 1342-6311
Volume 38, Issue 2
Displaying 1-11 of 11 articles from this issue
Short Communication
Regular Paper
  • Susumu Yoshizawa, Tomonori Azuma, Keiichi Kojima, Keisuke Inomura, Mas ...
    Article type: Regular Paper
    2023 Volume 38 Issue 2 Article ID: ME23015
    Published: 2023
    Released on J-STAGE: June 20, 2023
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    Diatoms are a major phytoplankton group responsible for approximately 20% of carbon fixation on Earth. They perform photosynthesis using light-harvesting chlo­rophylls located in plastids, an organelle obtained through eukaryote-eukaryote endosymbiosis. Microbial rhodopsin, a photoreceptor distinct from chlo­rophyll-based photosystems, was recently identified in some diatoms. However, the physiological function of diatom rhodopsin remains unclear. Heterologous expression techniques were herein used to investigate the protein function and subcellular localization of diatom rhodopsin. We demonstrated that diatom rhodopsin acts as a light-driven proton pump and localizes primarily to the outermost membrane of four membrane-bound complex plastids. Using model simulations, we also examined the effects of pH changes inside the plastid due to rhodopsin-mediated proton transport on photosynthesis. The results obtained suggested the involvement of rhodopsin-mediated local pH changes in a photosynthetic CO2-concentrating mechanism in rhodopsin-possessing diatoms.

Regular Paper
  • Shinsuke Kawagucci, Sanae Sakai, Eiji Tasumi, Miho Hirai, Yoshihiro Ta ...
    Article type: Regular Paper
    2023 Volume 38 Issue 2 Article ID: ME22108
    Published: 2023
    Released on J-STAGE: June 16, 2023
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    Post-mega-earthquake geochemical and microbiological properties in subseafloor sediments of the Japan Trench accretionary wedge were investigated using core samples from Hole C0019E, which was drilled down to 851‍ ‍m below seafloor (mbsf) at a water depth of 6,890 m. Methane was abundant throughout accretionary prism sediments; however, its concentration decreased close to the plate boundary decollement. Methane isotope systematics indicated a biogenic origin. The content of mole­cular hydrogen (H2) was low throughout core samples, but markedly increased at specific depths that were close to potential faults predicted by logging-while-drilling ana­lyses. Based on isotopic systematics, H2 appeared to have been abundantly produced via a low-temperature interaction between pore water and the fresh surface of crushed rock induced by earthquakes. Subseafloor microbial cell density remained constant at approximately 105‍ ‍cells‍ ‍mL–1. Amplicon sequences revealed that predominant members at the phylum level were common throughout the units tested, which also included members frequently found in anoxic subseafloor sediments. Metabolic potential assays using radioactive isotopes as tracers revealed homoacetogenic activity in H2-enriched core samples collected near the fault. Furthermore, homoacetogenic bacteria, including Acetobacterium carbinolicum, were isolated from similar samples. Therefore, post-earthquake subseafloor microbial communities in the Japan Trench accretionary prism appear to be episodically dominated by homoacetogenic populations and potentially function due to the earthquake-induced low-temperature generation of H2. These post-earthquake microbial communities may eventually return to the steady-state communities dominated by oligotrophic heterotrophs and hydrogenotrophic and methylotrophic methanogens that are dependent on refractory organic matter in the sediment.

Regular Paper
  • Ryo Nagasawa, Nobuhiko Nomura, Nozomu Obana
    Article type: Regular Paper
    2023 Volume 38 Issue 2 Article ID: ME22085
    Published: 2023
    Released on J-STAGE: June 10, 2023
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    Streptococcus mutans is a major caries-causing bacterium that forms firmly attached biofilms on tooth surfaces. Biofilm formation by S. mutans consists of polysaccharide-dependent and polysaccharide-independent processes. Among polysaccharide-independent processes, extracellular DNA (eDNA) mediates the initial attachment of cells to surfaces. We previously reported that the secreted peptide signal, competence-stimulating peptide (CSP) induced cell death in a subpopulation of cells, leading to autolysis-mediated eDNA release. The autolysin gene lytF, the expression of which is stimulated by CSP, has been shown to mediate CSP-dependent cell death, while cell death was not entirely abolished in the lytF deletion mutant, indicating the involvement of other factors. To identify novel genes involved in CSP-dependent cell death, we herein compared transcriptomes between live and dead cells derived from an isogenic population. The results obtained revealed the accumulation of several mRNAs in dead cells. The deletion of SMU_1553c, a putative bacteriocin gene, resulted in significant reductions in CSP-induced cell death and eDNA production levels from those in the parental strain. Moreover, in the double mutant strain of lytF and SMU_1553c, cell death and eDNA production in response to synthetic CSP were completely abolished under both planktonic and biofilm conditions. These results indicate that SMU_1553c is a novel cell death-related factor that contributes to CSP-dependent cell death and eDNA production.

Short Communication
  • Motoyuki Watanabe, Kensuke Igarashi, Souichiro Kato, Yoichi Kamagata, ...
    Article type: Short Communication
    2023 Volume 38 Issue 2 Article ID: ME23006
    Published: 2023
    Released on J-STAGE: June 10, 2023
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    Hydrogen peroxide (H2O2) inhibits microbial growth at a specific concentration. However, we previously isolated two environmental bacterial strains that exhibited sensitivity to a lower H2O2 concentration in agar plates. Putative catalase genes, which degrade H2O2, were detected in their genomes. We herein elucidated the characteristics of these putative genes and their products using a self-cloning technique. The products of the cloned genes were identified as functional catalases. The up-regulation of their expression increased the colony-forming ability of host cells under H2O2 pressure. The present results demonstrated high sensitivity to H2O2 even in microbes possessing functional catalase genes.

Regular Paper
  • Yusaku Funaoka, Haruna Hiromoto, Daichi Morimoto, Michiko Takahashi, K ...
    Article type: Regular Paper
    2023 Volume 38 Issue 2 Article ID: ME23036
    Published: 2023
    Released on J-STAGE: June 09, 2023
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    Heterosigma akashiwo virus (HaV) is a dsDNA virus that infects the bloom-forming raphidoflagellate Heterosigma akashiwo. Both the host and its virus are phenotypically diverse in terms of infection specificity. Their relationships have been examined based on the occurrence or absence of algal lysis following virus inoculation; however, variations in the strain-level host-virus relationship regarding infectivity and lysis rates remain unclear. Therefore, we performed a series of cross-infectivity tests using 60 H. akashiwo and 22 HaV strains isolated from the coastal waters of western Japan. The host strains were divided into 5 different groups and viruses into 4 groups. Using a representative strain from each group, algal lysis was observed in 14 of the (5×4=) 20 host-virus combinations; the concentration of infectious units in each HaV suspension was then assessed using the most probable number (MPN) assay on the five host strains. Virus titers ranged between 1.1×101 and 2.1×107 infectious units mL–1; the titer of each viral lysate was differently estimated using distinct H. akashiwo strains as hosts. These results suggest that (1) a clonal viral lysate comprises virions with different intraspecific infection specificities and/or (2) the efficiency and error rates of each intracellular replication process vary in each host-virus combination.

Regular Paper
  • Tomohiro Morohoshi, Naoya Yaguchi, Nobutaka Someya
    Article type: Regular Paper
    2023 Volume 38 Issue 2 Article ID: ME23019
    Published: 2023
    Released on J-STAGE: June 06, 2023
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    Pseudomonas putida is a major species belonging to the genus Pseudomonas. Although several hundred strains of P. putida have been deposited in culture collections, they potentially differ from the genetically defined “true Pseudomonas putida” because many were classified as P. putida based on their phenotypic and metabolic characteristics. A phylogenetic ana­lysis based on the concatenated sequences of the 16S rRNA and rpoD genes revealed that 46 strains of P. putida deposited in Japanese culture collections were classified into nine operational taxonomic units (OTUs) and eleven singletons. The OTU7 strain produces N-acylhomoserine lactone as a quorum-sensing signal. One of the OTU7 strains, JCM 20066, exhibited a ppuI-rsaL-ppuR quorum-sensing system that controls biofilm formation and motility. The P. putida type strain JCM 13063T and six other strains were classified as OTU4. Classification based on the calculation of whole-genome similarity revealed that three OTU4 strains, JCM 20005, 21368, and 13061, were regarded as the same species as JCM 13063T and defined as true P. putida. When orthologous genes in the whole-genome sequences of true P. putida strains were screened, PP4_28660 from P. putida NBRC 14164T (=JCM 13063T) was present in all true P. putida genome sequences. The internal region of PP4_28660 was successfully amplified from all true P. putida strains using the specific primers designed in this study.

Regular Paper
  • Han Long, Jun Wasaki
    Article type: Regular Paper
    2023 Volume 38 Issue 2 Article ID: ME22075
    Published: 2023
    Released on J-STAGE: May 23, 2023
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    Phosphorus (P) is often the limiting factor for plant growth because of its low mobility and availability in soils. Phosphate-solubilizing bacteria (PSB) have been shown to increase the availability of soil P fractions, thereby promoting plant growth. We herein investigated the effects of PSB on P availability in two important Chinese soil types: Lateritic red earths (La) and Cinnamon soils (Ci). We initially isolated 5 PSB strains and assessed their effects on soil P fractions. PSB mainly increased moderately labile P in La and labile P in Ci. We then selected the most promising PSB isolate (99% similarity with Enterobacter chuandaensis) and examined its effects on P accumulation in maize seedlings. The results obtained showed that plant P accumulation increased in response to a PSB inoculation in both soil types and the combination of the PSB inoculation and tricalcium phosphate fertilization in La significantly enhanced P accumulation in plant shoots. The present study demonstrated that the PSB isolates tested differed in their ability to mobilize P from distinct P fertilizers and that PSB isolates have potential as a valuable means of sustainably enhancing seedling growth in Chinese agricultural soils.

Regular Paper
  • Sachi Honma, Atsuko Ueki, Akio Ichimura, Kouki Suzuki, Nobuo Kaku, Kat ...
    Article type: Regular Paper
    2023 Volume 38 Issue 2 Article ID: ME22109
    Published: 2023
    Released on J-STAGE: May 11, 2023
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    Cold-adapted or psychrotrophic fermentative anaerobic bacteria were isolated from rice field soil in a temperate area in Japan using anaerobic enrichment cultures incubated at 5°C. Most isolates were obligately anaerobic, spore-forming rods and affiliated with different lineages of the genus Clostridium based on 16S rRNA gene sequences. The growth temperature ranges and physiological properties of three representative clostridial isolates (C5S7, C5S11T, and C5S18) were examined. Strain C5S7 grew at 0°C, but not at 20°C, and was identified as Clostridium estertheticum, a psychrophile isolated from spoiled, vacuum-packed, chilled meat (blown pack spoilage, BPS). Strain C5S7 produced butyrate, n-butanol, and abundant gases (H2 and CO2) as major fermentation products from the carbohydrates utilized. Strain C5S11T, which was recently described as Clostridium gelidum sp. nov., possessed psychrotrophic properties and grew at temperatures between 0 and 25°C. Strain C5S11T was saccharolytic, decomposed polysaccharides, such as inulin, pectin, and xylan, and produced acetate, butyrate, and gases. Strain C5S18 also grew at 0°C and the optimum growth temperature was 15°C. Strain C5S18 did not ferment carbohydrates and grew in a manner that was dependent on proteinaceous substrates. This strain was identified as the psychrotolerant species, Clostridium tagluense, originally isolated from a permafrost sample. Collectively, the present results indicate that psychrotrophic anaerobic bacteria with different physiological properties actively degrade organic matter in rice field soil, even in midwinter, in a cooperative manner using different substrates. Furthermore, different psychrotrophic species of the genus Clostridium with the ability to cause BPS inhabit cultivated soil in Japan.

Regular Paper
  • Tomoyuki Kosaka, Yuka Tsushima, Yusuke Shiota, Takayuki Ishiguchi, Kaz ...
    Article type: Regular Paper
    2023 Volume 38 Issue 2 Article ID: ME22111
    Published: 2023
    Released on J-STAGE: April 19, 2023
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    Propionate oxidation in Pelotomaculum thermopropionicum is performed under a thermodynamic limit. The most energetically unfavorable reaction in the propionate oxidation pathway is succinate oxidation. Based on previous genomic and transcriptomic ana­lyses, succinate oxidation in P. thermopropionicum under propionate-oxidizing conditions is conducted by the membrane-bound forms of two succinate dehydrogenases (SDHs). We herein examined the activity of SDH, the mechanisms underlying the succinate oxidation reaction in P. thermopropionicum, and the importance of the protein sequences of related genes. SDH activity was highly localized to the membrane fraction. An ana­lysis of the soluble fraction revealed that fumarate reductase received electrons from NADH, suggesting the involvement of membrane-bound SDH in propionate oxidation. We utilized an uncoupler and inhibitors of adenosine triphosphate (ATP) synthase and membrane-bound SDH to investigate whether the membrane potential of P. thermopropionicum supports propionate oxidation alongside hydrogen production. These chemicals inhibited hydrogen production, indicating that membrane-bound SDH requires a membrane potential for succinate oxidation, and this membrane potential is maintained by ATP synthase. In addition, the phylogenetic distribution of the flavin adenine dinucleotide‐binding subunit and conserved amino acid sequences of the cytochrome b subunit of SDHs in propionate-oxidizing bacteria suggests that membrane-bound SDHs possess specific conserved amino acid residues that are strongly associated with efficient succinate oxidation in syntrophic propionate-oxidizing bacteria.

Regular Paper
  • Chikage Minakata, Sawa Wasai-Hara, Satori Fujioka, Shuji Sano, Atsushi ...
    Article type: Regular Paper
    2023 Volume 38 Issue 2 Article ID: ME22081
    Published: 2023
    Released on J-STAGE: April 11, 2023
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    Vegetable soybean (Glycine max [L.]) is mainly consumed in Asian countries, but has recently attracted attention worldwide due to its high nutritional value. We aimed to identify the indigenous rhizobia of vegetable soybean in Yao City, Osaka Prefecture, Japan, and to clarify the relationships between the rhizobial community and soil environmental factors. Soil samples were collected from 12 vegetable soybean cultivation fields under two different conditions (six greenhouses and six open fields) in Yao City with different varieties of vegetable soybean. A total of 217 isolates were obtained from the nodules and clustered into nine operational taxonomic units (OTUs) with 97% homology based on the 16S-23S rRNA internal transcribed spacer (ITS) region. A phylogenetic ana­lysis showed that OTUs were closely related to Bradyrhizobium liaoningense, B. ottawaense, B. elkanii, and other Bradyrhizobium species and were dominant in this order. B. liaoningense was widely found in sampled sites and accounted for 50.7% of all isolates, while B. ottawaense was mostly limited to open fields. This rhizobial community differed from Japanese soybean rhizobia, in which B. diazoefficiens, B. japonicum, and B. elkanii were dominant. These results imply the characteristic differences among host plants or regional specialties. A non-metric multidimensional scaling (NMDS) ana­lysis revealed the significant impact of soil pH and the contents of Ca, Mg, Mn, total nitrogen (TN), and total carbon (TC) on the distribution of rhizobia. B. liaoningense was detected in soils with a neutral pH, and high TN and low Mn contents increased its abundance. The present study provides novel insights into Japanese rhizobia and potentially novel resources for sustainable agriculture.

feedback
Top