We have been focusing on the chemical and physical environments in the vicinity of hydrothermal vents in the primitive ocean with regard to the chemical evolutions of life. We used a flow reactor that was constructed for simulating the pressure and temperature conditions of the hydrothermal vents. In the flow reactor, a high-temperature high-pressure fluid at 200 ºC, 24 MPa was injected into a low temperature (0 ºC, 24 MPa). Temperature gradient should exist at the interface between high- and low-temperature fluids in the low-temperature chamber. Identification of the oligomeric products was made with the aid of an HPLC analysis.
The yield of diglycine was adopted as an index for the capacity of oligomerization. The amount of oligomerization was found to depend on the quenching rate of the temperature. Furthermore, the rate was enhanced by the presence of proteinoid microspheres made from five kinds of amino acids. These results suggest that both chemical and physical environments at none-equilibrium states should have a powerful effects on the prebiotic oligomerizations of amino acids during chemical evolutions of life on the primitive Earth.
抄録全体を表示