Journal of Radiation Research
Online ISSN : 1349-9157
Print ISSN : 0449-3060
Volume 50, Issue Suppl.A
<Microbeam Probes of Cellular Radiation Responses>
Displaying 1-10 of 10 articles from this issue
REVIEWS
  • Kevin M. PRISE, Giuseppe SCHETTINO, Boris VOJNOVIC, Oleg BELYAKOV, Chu ...
    2009 Volume 50 Issue Suppl.A Pages A1-A6
    Published: 2009
    Released on J-STAGE: April 04, 2009
    JOURNAL FREE ACCESS
    Microbeams have undergone a renaissance since their introduction and early use in the mid 60s. Recent advances in imaging, software and beam delivery have allowed rapid technological developments in microbeams for use in a range of experimental studies. The resurgence in the use of microbeams since the mid 90s has coincided with major changes in our understanding of how radiation interacts with cells. In particular, the evidence that bystander responses occur, where cells not directly irradiated can respond to irradiated neighbours, has brought about the evolution of new models of radiation response. Although these processes have been studied using a range of experimental approaches, microbeams offer a unique route by which bystander responses can be elucidated. Without exception, all of the microbeams currently active internationally have studied bystander responses in a range of cell and tissue models. Together these studies have considerably advanced our knowledge of bystander responses and the underpinning mechanisms. Much of this has come from charged particle microbeam studies, but increasingly, X-ray and electron microbeams are starting to contribute quantitative and mechanistic information on bystander effects. A recent development has been the move from studies with 2-D cell culture models to more complex 3-D systems where the possibilities of utilizing the unique characteristics of microbeams in terms of their spatial and temporal delivery will make a major impact.
    Download PDF (257K)
  • Tom K. HEI, Leslie K. BALLAS, David J. BRENNER, Charles R. GEARD
    2009 Volume 50 Issue Suppl.A Pages A7-A12
    Published: 2009
    Released on J-STAGE: April 04, 2009
    JOURNAL FREE ACCESS
    Recent developments in microbeam technology have made drastic improvements in particle delivery, focusing, image processing and precision to allow for rapid advances in our knowledge in radiation biology. The unequivocal demonstration that targeted cytoplasmic irradiation results in mutations in the nuclei of hit cells and the presence of non-targeted effects, all made possible using a charged particle microbeam, results in a paradigm shift in our basic understanding of the target theory and other radiation-induced low dose effects. The demonstration of a bystander effect in 3D human tissue and whole organisms have shown the potential relevance of the non-targeted response in human health. The demonstration of delayed mutations in the progeny of bystander cells suggest that genomic instability induced following ionizing radiation exposure is not dependent on direct damage to cell nucleus. The identification of specific signaling pathways provides mechanistic insight on the nature of the bystander process.
    Download PDF (297K)
  • Silvia GERARDI
    2009 Volume 50 Issue Suppl.A Pages A13-A20
    Published: 2009
    Released on J-STAGE: April 04, 2009
    JOURNAL FREE ACCESS
    A growing body of experimental evidence gathered in the last 10-15 years with regard to targeted and non-targeted effects of low doses of ionizing radiation (hyper-radiosensitivity, induced radio-resistance, adaptive response, genomic instability, bystander effects) has pushed the radiobiology research towards a better understanding of the mechanisms underlying these phenomena, the extent to which they are active in-vivo, and how they are inter-related. In such a way factors could be obtained and included in the estimation of potential cancer risk to the human population of exposure to low levels of ionizing radiation. Different experimental approaches have been developed and employed to study such effects in-vitro (medium transfer experiments; broad-field irradiation at low doses also with insert or shielding systems...). In this regard, important contributions came from ionizing radiation microbeam facilities that turn to be powerful tools to perform selective irradiations of individual cells inside a population with an exact, defined and reproducible dose (i.e. number of particles, in case of charged particle microbeams). Over the last 20 years the use of microbeams for radiobiological applications increased substantially and a continuously growing number of such facilities, providing X-rays, electrons, light and heavy ions, has been developing all over the world. Nowadays, just in Europe there are 12 microbeam facilities fully-operational or under-development, out of more than 30 worldwide. An overview of the European microbeam facilities for radiobiological studies is presented and discussed in this paper.
    Download PDF (253K)
  • Alan BIGELOW, Guy GARTY, Tomoo FUNAYAMA, Gerhard RANDERS-PEHRSON, Davi ...
    2009 Volume 50 Issue Suppl.A Pages A21-A28
    Published: 2009
    Released on J-STAGE: April 04, 2009
    JOURNAL FREE ACCESS
    Charged-particle microbeams, developed to provide targeted irradiation of individual cells, and then of sub-cellular components, and then of 3-D tissues and now organisms, have been instrumental in challenging and changing long accepted paradigms of radiation action. However the potential of these valuable tools can be enhanced by integrating additional components with the direct ability to measure biological responses in real time, or to manipulate the cell, tissue or organism of interest under conditions where information gained can be optimized. The RARAF microbeam has recently undergone an accelerator upgrade, and been modified to allow for multiple microbeam irradiation laboratories. Researchers with divergent interests have expressed desires for particular modalities to be made available and ongoing developments reflect these desires. The focus of this review is on the design, incorporation and use of multiphoton and other imaging, micro-manipulation and single cell biosensor capabilities at RARAF. Additionally, an update on the status of the other biology oriented microbeams in the Americas is provided.
    Download PDF (1299K)
  • Yasuhiko KOBAYASHI, Tomoo FUNAYAMA, Nobuyuki HAMADA, Tetsuya SAKASHITA ...
    2009 Volume 50 Issue Suppl.A Pages A29-A47
    Published: 2009
    Released on J-STAGE: April 04, 2009
    JOURNAL FREE ACCESS
    In order to study the radiobiological effects of low dose radiation, microbeam irradiation facilities have been developed in the world. This type of facilities now becomes an essential tool for studying bystander effects and relating signaling phenomena in cells or tissues. This review introduces you available microbeam facilities in Japan and in China, to promote radiobiology using microbeam probe and to encourage collaborative research between radiobiologists interested in using microbeam in Japan and in China.
    Download PDF (2337K)
  • Antonella BERTUCCI, Roger D. J. POCOCK, Gerhard RANDERS-PEHRSON, David ...
    2009 Volume 50 Issue Suppl.A Pages A49-A54
    Published: 2009
    Released on J-STAGE: April 04, 2009
    JOURNAL FREE ACCESS
    The understanding of complex radiation responses in biological systems, such as non-targeted effects as represented by the bystander response, can be enhanced by the use of genetically amenable model organisms. Almost all bystander studies to date have been carried out by using conventional single-cell in vitro systems, which are useful tools to characterize basic cellular and molecular responses. A few studies have been reported in monolayer explants and bystander responses have been also investigated in a three-dimensional normal human tissue system. However, despite the well-know usefulness of in vitro models, they cannot capture the complexity of radiation responses of living systems such as animal models. To carry out in vivo studies on the bystander effect we have developed a new technique to expose living organisms using proton microbeams. We report the use of a nematode C. elegans strain with a Green Fluorescent Protein (GFP) reporter for the hsp-4 heat-shock gene as an in vivo model for radiation studies. Exposing animals to heat and chemicals stressors leads to whole body increases in the hsp-4 protein reflected by enhanced fluorescence. We report here that γ-rays also can induce stress response in a dose dependent manner. However, whole body exposure to stress agents does not allow for evaluation of distance dependent response in non targeted tissues: the so-called bystander effect. We used the RARAF microbeam to site specifically deliver 3 MeV protons to a site in the tail of young worms. GFP expression was enhanced after 24 hours in a number dependent manner at distances > 100 μm from the site of irradiation.
    Download PDF (331K)
  • Marco DURANTE
    2009 Volume 50 Issue Suppl.A Pages A55-A58
    Published: 2009
    Released on J-STAGE: April 04, 2009
    JOURNAL FREE ACCESS
    Galactic cosmic radiation is acknowledged as one of the major barriers to human space exploration. In space, astronauts are exposed to charged particles from Z = 1 (H) up to Z = 28 (Ni), but the probability of a hit to a specific single cell in the human body is low. Particle microbeams can deliver single charged particles of different charge and energy to single cells from different tissues, and microbeam studies are therefore very useful for improving current risk estimates for long-term space travel. 2D in vitro cell cultures can be very useful for establishing basic molecular mechanisms, but they are not sufficient to extrapolate risk, given the substantial evidence proving tissue effects are key in determining the response to radiation insult. 3D tissue or animal systems represent a more promising target for space radiobiology using microbeams.
    Download PDF (692K)
  • Hongning ZHOU, Mei HONG, Yunfei CHAI, Tom K. HEI
    2009 Volume 50 Issue Suppl.A Pages A59-A65
    Published: 2009
    Released on J-STAGE: April 04, 2009
    JOURNAL FREE ACCESS
    The prevailing dogma for radiation biology is that genotoxic effects of ionizing radiation such as mutations and carcinogenesis are attributed mainly to direct damage to the nucleus. However, with the development of microbeam that can target precise positions inside the cells, accumulating evidences have shown that energy deposit by radiation in nuclear DNA is not required to trigger the damage, extra-nuclear or extra-cellular radiation could induce the similar biological effects as well. This review will summarize the biological responses after cytoplasm irradiated by microbeam, and the possible mechanisms involved in cytoplasmic irradiation.
    Download PDF (161K)
  • Hideki MATSUMOTO, Masanori TOMITA, Kensuke OTSUKA, Masanori HATASHITA
    2009 Volume 50 Issue Suppl.A Pages A67-A79
    Published: 2009
    Released on J-STAGE: April 04, 2009
    JOURNAL FREE ACCESS
    A classic paradigm in radiation biology asserts that all radiation effects on cells, tissues and organisms are due to the direct action of radiation on living tissue. Using this model, possible risks from exposure to low dose ionizing radiation (below 100 mSv) are estimated by extrapolating from data obtained after exposure to higher doses of radiation, using a linear non-threshold model (LNT model). However, the validity of using this dose-response model is controversial because evidence accumulated over the past decade has indicated that living organisms, including humans, respond differently to low dose/low dose-rate radiation than they do to high dose/high dose-rate radiation. These important responses to low dose/low dose-rate radiation are the radiation-induced adaptive response, the bystander response, low-dose hypersensitivity, and genomic instability. The mechanisms underlying these responses often involve biochemical and molecular signals generated in response to targeted and non-targeted events. In order to define and understand the bystander response to provide a basis for the understanding of non-targeted events and to elucidate the mechanisms involved, recent sophisticated research has been conducted with X-ray microbeams and charged heavy particle microbeams, and these studies have produced many new observations. Based on these observations, associations have been suggested to exist between the radioadaptive and bystander responses. The present review focuses on these two phenomena, and summarizes observations supporting their existence, and discusses the linkage between them in light of recent results obtained from experiments utilizing microbeams.
    Download PDF (861K)
EXTENDED ABSTRACTS
feedback
Top