Journal of Reproduction and Development
Online ISSN : 1348-4400
Print ISSN : 0916-8818
ISSN-L : 0916-8818
Volume 66, Issue 4
Displaying 1-13 of 13 articles from this issue
Opinions and Hypotheses
  • Fernando LÓPEZ-GATIUS, Irina GARCIA-ISPIERTO
    Article type: Opinions and Hypotheses
    2020 Volume 66 Issue 4 Pages 287-289
    Published: 2020
    Released on J-STAGE: August 20, 2020
    Advance online publication: April 07, 2020
    JOURNAL OPEN ACCESS

    In this study, we present two proposed approaches to prevent twin pregnancies in dairy cattle: 1) single, in vitro-produced embryonic transfer into a recipient cow or 2) subordinate follicle drainage at the time of insemination. Both procedures lead to improved embryonic survival. As the use of sexed semen generates herd replacements and additional heifers, we propose the transfer of a single female cattle embryo into cows that are not suitable for producing replacements, and follicular drainage in lactating cows with genetic merit. This should eliminate economic losses associated with twin pregnancies and increase cattle output of the herd.

    Download PDF (599K)
SRD Outstanding Research Award 2019
  • Hiroya KADOKAWA
    Article type: SRD Outstanding Research Award 2019
    2020 Volume 66 Issue 4 Pages 291-297
    Published: 2020
    Released on J-STAGE: August 20, 2020
    Advance online publication: April 06, 2020
    JOURNAL OPEN ACCESS

    Previous studies in the 1960s and 1970s have reported that both gonadotropin-releasing hormone (GnRH) and estradiol-activated nuclear estrogen receptors regulate gonadotropin secretion in women. However, I had previously reported that gonadotroph function is regulated by complex crosstalk between several membrane receptors. RNA-seq had previously revealed 259 different receptor genes expressed in the anterior pituitary of heifers. However, the biological roles of most of these receptors remain unknown. I identified four new receptors of interest: G protein-coupled receptor 30 (GPR30), anti-Mullerian hormone (AMH) receptor type 2 (AMHR2), and G protein-coupled receptors 61 and 153 (GPR61 and GPR153). GPR30 rapidly (within a few minutes) mediates picomolar, but not nanomolar, levels of estradiol to suppress GnRH-induced luteinizing hormone (LH) secretion from bovine gonadotrophs, without decreasing mRNA expressions of the LHα, LHβ, or follicle-stimulating hormone (FSH) β subunits. GPR30 is activated by other endogenous estrogens, estrone and estriol. Moreover, GPR30 activation by zearalenone, a nonsteroidal mycoestrogen, suppresses LH secretion. AMHR2, activated by AMH, stimulates LH and FSH secretion, thus regulating gonadotrophs, where other TGF-β family members, including inhibin and activin, potentially affect FSH secretion. I also show that GPR61, activated by its ligand (recently discovered) significantly alters LH and FSH secretion. GPR61, GPR153, and AMHR2 co-localize with the GnRH receptor in unevenly dispersed areas of the bovine gonadotroph cell surface, probably lipid rafts. The findings summarized in this review reveal a new paradigm regarding the mechanisms regulating reproduction via novel receptors expressed on bovine gonadotrophs.

    Download PDF (2258K)
SRD Innovative Technology Award 2019
  • Keiji MOCHIDA
    Article type: SRD Innovative Technology Award 2019
    2020 Volume 66 Issue 4 Pages 299-306
    Published: 2020
    Released on J-STAGE: August 20, 2020
    Advance online publication: April 19, 2020
    JOURNAL OPEN ACCESS

    Assisted reproductive technologies (ARTs) are widely used in the animal industry, human clinics, and for basic research. In small laboratory animal species such as mice, ARTs are essential for the production of animals for experiments, the preservation of genetic resources, and for the generation of new strains of genetically modified animals. The RIKEN BioResource Research Center (BRC) is one of the largest repositories of such animal bioresources, and maintains approximately 9,500 strains of mice with a variety of genetic backgrounds. We have sought to devise ARTs specific to the reproductive and physiological characteristics of each strain. Such ARTs include superovulation, in vitro fertilization (IVF), the cryopreservation of embryos and spermatozoa, transportation of cryopreserved materials and embryo transfer (ET). Of these, superovulation likely has the most influence on animal production because it determines the quantity of starting material for other ARTs. Superovulation using anti-inhibin serum combined with estrous synchronization has resulted in approximately a three-fold increase in production efficiency with IVF–ET in the C57BL/6J strain. Wild-derived strains are important as genetically diverse resources for murine rodents (Genus Mus), and many are unique to the BRC. We have also successfully developed ARTs for more than 50 wild-derived strains, which have been cryopreserved for future use. Our work to improve and develop ARTs for mice and other small laboratory species will contribute to the cost-effectiveness of routine operations at repository centers, and to the provision of high quality animals for research use.

    Download PDF (1229K)
SRD Young Investigator Award 2019
  • Ryo NISHIMURA, Kiyoshi OKUDA
    Article type: SRD Young Investigator Award 2019
    2020 Volume 66 Issue 4 Pages 307-310
    Published: 2020
    Released on J-STAGE: August 20, 2020
    Advance online publication: April 04, 2020
    JOURNAL OPEN ACCESS

    There has been increasing interest in the role of hypoxia in the microenvironment of organs, because of the discovery of hypoxia-inducible factor-1 (HIF1), which acts as a transcription factor for many genes activated specifically under hypoxic conditions. The ovary changes day by day during the estrous cycle as it goes through phases of follicular growth, ovulation, and formation and regression of the corpus luteum (CL). These phenomena are regulated by hypothalamic and pituitary hormones, sex steroids, peptides and cytokines, as well as oxygen conditions. Hypoxia strongly induces angiogenesis via transcription of a potent angiogenic factor, vascular endothelial growth factor (VEGF), that is regulated by HIF1. A CL forms with a rapid increase of angiogenesis that is mainly induced by HIF1-VEGF signaling. Hypoxia also contributes to luteolysis by down-regulating progesterone synthesis and by up-regulating apoptosis of luteal cells. This review focuses on recent studies on the roles of hypoxia- and HIF1-regulated genes in the regulation of bovine CL function.

    Download PDF (703K)
  • Fumie MAGATA
    Article type: SRD Young Investigator Award 2019
    2020 Volume 66 Issue 4 Pages 311-317
    Published: 2020
    Released on J-STAGE: August 20, 2020
    Advance online publication: April 11, 2020
    JOURNAL OPEN ACCESS

    Uterine inflammatory diseases commonly occur in postpartum dairy cows, resulting in reduced reproductive performance due to aberrant uterine and ovarian activity. Infection of the uterus with gram-negative bacteria results in the detection of lipopolysaccharide (LPS) in the plasma and follicular fluid of cows along with uterine inflammation. LPS acts on follicular components such as theca cells, granulosa cells, and follicle-enclosed oocytes, leading to impaired follicular activity. Follicles with a high LPS environment exhibit reduced follicular steroidogenesis due to the inhibition of steroidogenic enzyme transcription. Primary cell cultures of bovine granulosa and theca cells have shown that LPS acts on follicular cells to impair steroid production, which may disturb follicle growth and/or reduce their ability to ovulate. Even if ovulation occurs, cows with uterine inflammation are less likely to conceive because in addition to uterine damage, LPS also impairs the developmental competence of oocytes. LPS perturbs the nuclear and cytoplasmic maturation of bovine oocytes. Moreover, oocytes matured using LPS treatment are less likely to develop into the blastocyst stage. Such oocytes also have a reduced number of trophoblast cells in blastocysts. Therefore, the detrimental effects of LPS on ovarian activity may be partly responsible for infertility in cows with uterine inflammation. Novel treatment and prevention strategies for uterine inflammatory diseases can be developed by advancing our knowledge of the pathophysiology underlying ovarian dysfunction, and this can only be achieved by further research. The present review outlines the molecular pathogenesis of LPS-induced ovarian dysfunction.

    Download PDF (1181K)
Original Article
  • Felix R. GRAUBNER, Miguel TAVARES PEREIRA, Alois BOOS, Mariusz P. KOWA ...
    Article type: Original Article
    2020 Volume 66 Issue 4 Pages 319-329
    Published: 2020
    Released on J-STAGE: August 20, 2020
    Advance online publication: March 20, 2020
    JOURNAL OPEN ACCESS

    Recently, we established an in vitro model with immortalized dog uterine stromal (DUS) cells for investigations into canine-specific decidualization. Their capability to decidualize was assessed with cAMP and prostaglandin (PG) E2. Here, we show that the effects of PGE2 are mediated through both of the cAMP-mediating PGE2 receptors (PTGER2/4). Their functional inhibition suppressed gene expression of PRLR and PGR in DUS cells. We also assessed the effects of cAMP and PGE2 on selected extracellular matrix components and CX43, and showed that cAMP, but not PGE2, increases COL4, extracellular matrix protein 1 (ECM1) and CX43 protein levels during in vitro decidualization, indicating a mesenchymal-epithelial decidual transformation in these cells. Thus, although PGE2 is involved in decidualization, it does not appear to regulate extracellular matrix. Further, the role of progesterone (P4) during in vitro decidualization was addressed. P4 upregulated PRLR and PGR in DUS cells, but these effects were not influenced by PGE2; both P4 and PGE2 hormones appeared to act independently. P4 did not affect IGF1 expression, which was upregulated by PGE2, however, it suppressed expression of IGF2, also in the presence of PGE2. Similarly, P4 did not affect PGE2 synthase (PTGES), but in the presence of PGE2 it increased PTGER2 levels and, regardless of the presence of PGE2, suppressed expression of PTGER4. Our results indicate a reciprocal regulatory loop between PGE2 and P4 during canine in vitro decidualization: whereas P4 may be involved in regulating PGE2-mediated decidualization by regulating the availability of its receptors, PGE2 regulates PGR levels in a manner dependent on PTGER2 and -4.

    Download PDF (1831K)
  • Mingming LEI, Rong CHEN, Qingming QIN, Huanxi ZHU, Zhendan SHI
    Article type: Original Article
    2020 Volume 66 Issue 4 Pages 331-340
    Published: 2020
    Released on J-STAGE: August 20, 2020
    Advance online publication: April 11, 2020
    JOURNAL OPEN ACCESS
    Supplementary material

    Magang geese exhibit a unique characteristic of follicular development, with eight largest orderly arranged pre-ovulatory follicles in the abdominal cavity. However, little is known about the mechanisms underlying this follicular development. This study aimed to compare gene expression profiles of granulosa cells (GCs) at different stages of follicular development and provide comprehensive insights into follicle selection and the mechanisms underlying the well-defined follicle hierarchy in Magang geese. GCs of large white follicles (LWFs), small yellow follicles (SYFs), F8, F4, and F1 were used for RNA-seq analysis; 374, 1117, 791, and 593 genes were differentially expressed in stages LWFs to SYFs, SYFs to F8, F8 to F4, and F4 to F1, respectively, suggesting that these genes contribute to follicle selection and development. Reliability of sequencing data was verified through qPCR analysis of 24 genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways revealed a complex mechanism that remodels the extracellular matrix and turnover of extracellular matrix components in follicular development and ovulation and involves multiple pathway, such as focal adhesion, adherens junction, and extracellular matrix–receptor interaction. Some unique characteristics were observed during the different follicular development stages. For instance, some differentially expressed genes were enriched in progesterone-mediated oocyte maturation and steroid biosynthesis from stage SYFs to F8, whereas others were enriched in actin cytoskeleton regulation and vascular smooth muscle contraction from stage F4 to F1. These findings enhance our current understanding of GC function and ovarian follicles during the key stages of follicular development.

    Download PDF (3462K)
  • Mito KANATSU-SHINOHARA, Guiying CHEN, Hiroko MORIMOTO, Takashi SHINOHA ...
    Article type: Original Article
    2020 Volume 66 Issue 4 Pages 341-349
    Published: 2020
    Released on J-STAGE: August 20, 2020
    Advance online publication: March 26, 2020
    JOURNAL OPEN ACCESS
    Supplementary material

    The spermatogonial stem cell (SSC) population in testis is small, and the lack of SSC markers has severely handicapped research on these cells. During our attempt to identify genes involved in SSC aging, we found that CD2 is expressed in cultured SSCs. Flow cytometric analysis and spermatogonial transplantation experiments showed that CD2 is expressed in SSCs from mature adult mouse testes. Cultured SSCs transfected with short hairpin RNAs (shRNAs) against CD2 proliferated poorly and showed an increased frequency of apoptosis. Moreover, functional analysis of transfected cells revealed impairment of SSC activity. Fluorescence activated cell sorting and spermatogonial transplantation experiments showed that CD2 is expressed not only in mouse but also in rat SSCs. The results indicate that CD2 is a novel SSC surface marker conserved between mouse and rat SSCs.

    Editor's pick

    Cover Story:
    Spermatogonial stem cells (SSCs) comprise merely a small population in the testis. To facilitate studies on SSCs, it is necessary to find markers that are expressed thereon. Kanatsu-Shinohara et al. discovered a new surface marker on mouse and rat SSCs  known as cluster of differentiation 2 (CD2) while studying the molecular mechanism of SSC aging (Kanatsu-Shinohara et al. CD2 is a surface marker for mouse and rat spermatogonial stem cells. pp. 341–349). Using a fluorescence-activated cell sorter, SSCs were enriched by 291.9-fold compared to those in wild-type mouse testes, based on CD2 expression. CD2 depletion by short hairpin RNA in cultured SSCs compromised their stem cell activity. Conserved CD2 expression on mouse and rat SSCs suggest that CD2 may also be expressed on SSCs from other animal species, including humans.

    Download PDF (13679K)
  • Takuya SASAKI, Tomoya SONODA, Ryoki TATEBAYASHI, Yuri KITAGAWA, Shinya ...
    Article type: Original Article
    2020 Volume 66 Issue 4 Pages 351-357
    Published: 2020
    Released on J-STAGE: August 20, 2020
    Advance online publication: April 12, 2020
    JOURNAL OPEN ACCESS

    Accumulating evidence suggests that KNDy neurons located in the hypothalamic arcuate nucleus (ARC), which are reported to express kisspeptin, neurokinin B, and dynorphin A, are indispensable for the gonadotropin-releasing hormone (GnRH) pulse generation that results in rhythmic GnRH secretion. The aims of the present study were to investigate the effects of peripheral administration of the neurokinin 3 receptor (NK3R/TACR3, a receptor for neurokinin B) antagonist, SB223412, on GnRH pulse-generating activity and pulsatile luteinizing hormone (LH) secretion in ovariectomized Shiba goats treated with luteal phase levels of estrogen. The NK3R antagonist was infused intravenously for 4 h {0.16 or 1.6 mg/(kg body weight [BW]·4 h)} during which multiple unit activity (MUA) in the ARC was recorded, an electrophysiological technique commonly employed to monitor GnRH pulse generator activity. In a separate experiment, the NK3R antagonist (40 or 200 mg/[kg BW·day]) was administered orally for 7 days to determine whether the NK3R antagonist could modulate pulsatile LH secretion when administered via the oral route. Intravenous infusion of the NK3R antagonist significantly increased the interval of episodic bursts of MUA compared with that of the controls. Oral administration of the antagonist for 7 days also significantly prolonged the interpulse interval of LH pulses. The results of this study demonstrate that peripheral administration of an NK3R antagonist suppresses pulsatile LH secretion by acting on the GnRH pulse generator, suggesting that NK3R antagonist administration could be used to modulate reproductive functions in ruminants.

    Download PDF (1660K)
  • Kana IKEGAMI, Teppei GOTO, Sho NAKAMURA, Youki WATANABE, Arisa SUGIMOT ...
    Article type: Original Article
    2020 Volume 66 Issue 4 Pages 359-367
    Published: 2020
    Released on J-STAGE: August 20, 2020
    Advance online publication: April 20, 2020
    JOURNAL OPEN ACCESS

    The present study aimed to evaluate whether novel conditional kisspeptin neuron-specific Kiss1 knockout (KO) mice utilizing the Cre-loxP system could recapitulate the infertility of global Kiss1 KO models, thereby providing further evidence for the fundamental role of hypothalamic kisspeptin neurons in regulating mammalian reproduction. We generated Kiss1-floxed mice and hypothalamic kisspeptin neuron-specific Cre-expressing transgenic mice and then crossed these two lines. The conditional Kiss1 KO mice showed pubertal failure along with a suppression of gonadotropin secretion and ovarian atrophy. These results indicate that newly-created hypothalamic Kiss1 KO mice obtained by the Cre-loxP system recapitulated the infertility of global Kiss1 KO models, suggesting that hypothalamic kisspeptin, but not peripheral kisspeptin, is critical for reproduction. Importantly, these Kiss1-floxed mice are now available and will be a valuable tool for detailed analyses of roles of each population of kisspeptin neurons in the brain and peripheral kisspeptin-producing cells by the spatiotemporal-specific manipulation of Cre expression.

    Download PDF (1775K)
  • Shiori MINABE, Sho NAKAMURA, Eri FUKUSHIMA, Marimo SATO, Kana IKEGAMI, ...
    Article type: Original Article
    2020 Volume 66 Issue 4 Pages 369-375
    Published: 2020
    Released on J-STAGE: August 20, 2020
    Advance online publication: April 26, 2020
    JOURNAL OPEN ACCESS

    Accumulating evidence suggests that kisspeptin-GPR54 signaling is indispensable for gonadotropin-releasing hormone (GnRH)/gonadotropin secretion and consequent reproductive functions in mammals. Conventional Kiss1 knockout (KO) mice and rats are reported to be infertile. To date, however, no study has investigated the effect of inducible central Kiss1 KO/knockdown on pulsatile gonadotropin release in male mammals. Here we report an in vivo analysis of inducible conditional Kiss1 knockdown male mice. The mice were generated by a bilateral injections of either adeno-associated virus (AAV) vectors driving Cre recombinase (AAV-Cre) or AAV vectors driving GFP (AAV-GFP, control) into the hypothalamic arcuate nucleus (ARC) of Kiss1-floxed male mice, in which exon 3 of the Kiss1 gene were floxed with loxP sites. Four weeks after the AAV-Cre injection, the mice showed a profound decrease in the both number of ARC Kiss1-expressing cells and the luteinizing hormone (LH) pulse frequency. Interestingly, pulsatile LH secretion was apparent 8 weeks after the AAV-Cre injection despite the suppression of ARC Kiss1 expression. The control Kiss1-floxed mice infected with AAV-GFP showed apparent LH pulses and Kiss1 expression in the ARC at both 4 and 8 weeks after the AAV-GFP injection. These results with an inducible conditional Kiss1 knockdown in the ARC of male mice suggest that ARC kisspeptin neurons are responsible for pulsatile LH secretion in male mice, and indicate the possibility of a compensatory mechanism that restores GnRH/LH pulse generation.

    Download PDF (3979K)
  • Ho-Geun JEGAL, Hyo-Jin PARK, Jin-Woo KIM, Seul-Gi YANG, Min-Ji KIM, De ...
    Article type: Original Article
    2020 Volume 66 Issue 4 Pages 377-386
    Published: 2020
    Released on J-STAGE: August 20, 2020
    Advance online publication: April 22, 2020
    JOURNAL OPEN ACCESS
    Supplementary material

    Ruthenium red (RR) inhibits calcium (Ca2+) entry from the cytoplasm to the mitochondria, and is involved in maintenance of Ca2+ homeostasis in mammalian cells. Ca2+ homeostasis is very important for further embryonic development of fertilized oocytes. However, the effect of RR on mitochondria-Ca2+ (mito-Ca2+) levels during in vitro fertilization (IVF) on subsequent blastocyst developmental capacity in porcine is unclear. The present study explored the regulation of mito-Ca2+ levels using RR and/or histamine in fertilized oocytes and their influence on blastocyst developmental capacity in pigs. Red fluorescence intensity by the mito-Ca2+ detection dye Rhod-2 was significantly increased (P < 0.05) in zygotes 6 h after IVF compared to mature oocytes. Based on these results, we investigated the changes in mito-Ca2+ by RR (10 and 20 μM) in presumptive zygotes using Rhod-2 staining and mito-Ca2+ uptake 1 (MICU1) protein levels as an indicator of mito-Ca2+ uptake using western blot analysis. As expected, RR-treated zygotes displayed decreased protein levels of MICU1 and Rhod-2 red fluorescence intensity compared to non-treated zygotes 6 h after IVF. Blastocyst development rate of 20 μM RR-treated zygotes was significantly increased 6 h after IVF (P < 0.05) due to improved mitochondrial functions. Conversely, the blastocyst development rate was significantly decreased in histamine (mito-Ca2+ inhibitor, 100 nM) treated zygotes (P < 0.05). The collective results demonstrate that RR improves blastocyst development in porcine embryos by regulating mito-Ca2+ and MICU1 expression following IVF.

    Download PDF (2434K)
  • Sevastiani ANTONOULI, Maria Grazia PALMERINI, Serena BIANCHI, Gianna R ...
    Article type: Original Article
    2020 Volume 66 Issue 4 Pages 387-397
    Published: 2020
    Released on J-STAGE: August 20, 2020
    Advance online publication: April 28, 2020
    JOURNAL OPEN ACCESS

    Controlled ovarian hyperstimulation (COH) is routinary used in assisted reproductive technologies (ARTs) to increase the yields of mature oocytes. The possibility that patients with a history of failures or poor-responders may develop side-effects following these treatments is still debated. Epidemiological studies reported controversial results about pregnancy outcome and the risk of developing gynecological cancers. By using a mouse model, here we compared the ultrastructural features of fallopian tubes (FTs) obtained from mice undergoing or not (control, CTR) four (4R) and eight (8R) rounds of gonadotropin stimulation. Although the morphological characteristics of oviductal layers seemed unaffected by repeated treatments, dose-response ultrastructural alterations in the ampulla appeared in the 4R group and even more in the 8R group. The targets were oviductal ciliated (CCs) and non-ciliated (NCCs) cells, which showed damaged mitochondria and glycogen accumulations in the cytoplasm. The drastic reduction of CCs, evident after 4R, was supported by the absence of cilia. After 8R, glycogen granules were significantly reduced and massive degeneration of mitochondria, which appeared swollen and/or vacuolated, occurred in NCCs. Moreover, disintegrated mitochondria were found at the periphery of mitophagic vacuoles with evident signs of cristolysis. The morphometric analysis evidenced a significant increase in the density and frequency of damaged mitochondria after 4R and 8R. The absence of cilia, necessary to sustain oviductal transport of oocytes, spermatozoa and embryos, may originate from either mitochondrial dysfunction or glycogen consumption. These results suggest that repeated COH treatments could induce alterations impairing fertilization and embryo transport toward the uterus.

    Download PDF (3466K)
feedback
Top