Journal of Applied Glycoscience
Online ISSN : 1880-7291
Print ISSN : 1344-7882
ISSN-L : 1344-7882
最新号
選択された号の論文の4件中1~4を表示しています
Regular Paper
  • Tomohiro Kuga, Naoki Sunagawa, Kiyohiko Igarashi
    2024 年 71 巻 2 号 p. 37-46
    発行日: 2024/05/20
    公開日: 2024/05/19
    ジャーナル オープンアクセス HTML
    電子付録

    Cellodextrin phosphorylase (CDP) plays a key role in energy-efficient cellulose metabolism of anaerobic bacteria by catalyzing phosphorolysis of cellodextrin to produce cellobiose and glucose 1-phosphate, which can be utilized for glycolysis without consumption of additional ATP. As the enzymatic phosphorolysis reaction is reversible, CDP is also employed to produce cellulosic materials in vitro. However, the enzyme is rapidly inactivated by oxidation, which hinders in vitro utilization in aerobic environments. It has been suggested that the cysteine residues of CDP, which do not form disulfide bonds, are responsible for the loss of activity, and the aim of the present work was to test this idea. For this purpose, we replaced all 11 free cysteine residues of CDP from Acetivibrio thermocellus (formerly known as Clostridium thermocellum) with serine, which structurally resembles cysteine in our previous work. Herein, we show that the resulting CDP variant, named CDP-CS, has comparable activity to the wild-type enzyme, but shows increased stability to oxidation during long-term storage. X-Ray crystallography indicated that the mutations did not markedly alter the overall structure of the enzyme. Ensemble refinement of the crystal structures of CDP and CDP-CS indicated that the C372S and C625S mutations reduce structural fluctuations in the protein main chain, which may contribute to the increased stability of CDP-CS to oxidation.

  • Hideki Okada, Akira Yamamori, Naoki Kawazoe, Keiji Ueno, Shuichi Onode ...
    2024 年 71 巻 2 号 p. 47-54
    発行日: 2024/05/20
    公開日: 2024/05/19
    ジャーナル オープンアクセス HTML

    Super Ohtaka®, a fermented beverage of plant extracts, is prepared from approximately 50 kinds of fruits and vegetables. Natural fermentation is mainly performed by lactic acid bacteria (Leuconostoc spp.) and yeast (Zygosaccharomyces spp.). Four water-soluble polysaccharide fractions were obtained from Super Ohtaka® by dialysis, ion exchange chromatography, and gel filtration chromatography; these fractions were designated as OEP1-1, OEP1-2, OEP2, and OEP3. OEP1-1 is a polysaccharide composed solely of glucose. The other fractions contained polysaccharides composed of glucose, galactose, mannose, and a small amount of arabinose. OEP2 and OEP3 contained phosphorus, which was not detected in OEP1-1 and OEP1-2. Furthermore, the immunomodulatory activity of the polysaccharides was investigated in murine macrophage cell lines. OEP2 and OEP3 significantly induced nitric oxide (NO) secretion by macrophages in a dose-dependent manner (concentration range of 4 to 100 µg/mL). When the concentration of OEP3 was 100 µg/mL, NO production was almost identical to lipopolysaccharide (LPS; 10 ng/mL) used as a positive control. Notably, OEP3 induced NO secretion more strongly than OEP2. This trend was also observed for TNF-α, IL-1β, IL-6, and IL-12 p40 secretion. Overall, our in vitro studies on polysaccharides isolated from Super Ohtaka® suggest that the fermented beverage stimulates macrophages and activates the immune system.

  • Sora Yamaguchi, Naoki Sunagawa, Masahiro Samejima, Kiyohiko Igarashi
    2024 年 71 巻 2 号 p. 55-62
    発行日: 2024/05/20
    公開日: 2024/05/19
    ジャーナル オープンアクセス HTML
    電子付録

    Cellobiohydrolase (CBH), belonging to glycoside hydrolase family 6 (GH6), plays an essential role in cellulose saccharification, but its low thermotolerance presents a challenge in improving the reaction efficiency. Based on a report that chimeric CBH II (GH6) engineered to remove non-disulfide-bonded free Cys shows increased thermotolerance, we previously mutated the two free Cys residues to Ser in GH6 CBH from the basidiomycete Phanerochaete chrysosporium (PcCel6A) and obtained a thermotolerant double mutant, C240S/C393S (Yamaguchi et al., J. Appl. Glycosci. 2020; 67: 79-86). Here, characterization of the double mutant revealed that its activity towards both amorphous and crystalline cellulose was higher than that of the wild-type enzyme at elevated temperature, suggesting that the catalytic domain is the major contributor to the increased thermotolerance. To investigate the role of each free Cys residue, we prepared both single mutants, C240S and C393S, of the catalytic domain of PcCel6A and examined their residual activity at high temperature and the temperature-dependent changes of folding by means of circular dichroism measurements and thermal shift assay. The results indicate that the C393S mutation is the main contributor to both the increased thermotolerance of C240S/C393S and the increased activity of the catalytic domain at high temperature.

  • Sora Yamaguchi, Naoki Sunagawa, Masahiro Samejima, Kiyohiko Igarashi
    2024 年 71 巻 2 号 p. 63-72
    発行日: 2024/05/20
    公開日: 2024/05/19
    ジャーナル オープンアクセス HTML
    電子付録

    Glycoside hydrolase family 6 cellobiohydrolase (GH6 CBH) is a group of cellulases capable of hydrolyzing crystalline cellulose. However, the synergistic reaction of GH6 CBH with other cellulases is hindered by its relatively low thermotolerance. We previously obtained a thermotolerant double mutant, C240S/C393S, of GH6 CBH from the basidiomycete Phanerochaete chrysosporium (PcCel6A) by replacing the two free cysteine (Cys) residues, C240 and C393, with serine (Yamaguchi et al., J Appl Glycosci. 2020; 67;79-86). In the accompanying paper (Part I; Yamaguchi et al., J Appl Glycosci. 2024; 71: 55-62), we measured the temperature dependence of the activity and folding of C240S/C393S and its single mutants, C240S and C393S, and found that replacement of C393 was the major contributor to the increased thermotolerance of C240S/C393S. Here, in order to investigate the mechanism involved, we crystallized the wild-type and the mutant enzymes and compared their X-ray crystal structures. The overall structures of the wild-type and the three mutant enzymes were similar. However, C240S/C393S had the lowest relative B-factor at both the N-terminal loop (residues 172-177) and the C-terminal loop (residues 390-425). This result suggests that reduced structural fluctuation of the substrate-enclosing loops, possibly due to stronger hydrogen bonding involving C393, could account for the increased thermotolerance of C240S/C393S.

feedback
Top