Journal of Applied Glycoscience
Online ISSN : 1880-7291
Print ISSN : 1344-7882
ISSN-L : 1344-7882
71 巻, 1 号
選択された号の論文の5件中1~5を表示しています
Regular Papers
  • Shinya Yamazaki, Ibuki Shirata, Masahiro Mizuno, Yoshihiko Amano
    2024 年 71 巻 1 号 p. 1-7
    発行日: 2024/03/20
    公開日: 2024/04/20
    ジャーナル オープンアクセス HTML
    電子付録

    Trehalose is known to protect enzymes from denaturation. In the present study, we observed promotion of apple polyphenol oxidase (PPO) inactivation in a trehalose solution with thermal treatment. Crude PPO from Fuji apple was mixed with either sucrose or trehalose solutions, then the samples treated at 25 or 65 °C. In the presence of trehalose, PPO activities were markedly decreased upon treatment at 65 °C with increasing trehalose concentration. Furthermore, the reduction in PPO activity in the presence of trehalose was proportional to storage time after thermal treatment and thermal treatment time. Comparing PPO activities between treatment time 0 and 90 min at 65 °C, activities decreased 89 % for trehalose concentration of 0.2 M. These results indicates that trehalose acts not only as inhibitor but as promoter of inactivation of PPO. The Lineweaver-Burk plot indicated that trehalose acts on PPO as a non-competitive inhibitor during the 65 °C treatment. Two mechanisms of PPO inactivation in the presence of trehalose were suggested; one is the suppression of PPO activation cause by a thermal treatment, and another is the conformational change to inactivation form of PPO in conjunction with trehalose and a thermal treatment. Additionally, apple juice including 0.2 or 0.5 M trehalose with 65 °C treatment indicated slow browning than the juice with 0.2 or 0.5 M sucrose or without sugars. This result demonstrates that the preventing of browning with trehalose is a viable industrial food process.

  • Motomitsu Kitaoka, Ayu Takano, Mei Takahashi, Yoshiki Yamakawa, Shinya ...
    2024 年 71 巻 1 号 p. 9-13
    発行日: 2024/03/20
    公開日: 2024/04/20
    ジャーナル オープンアクセス HTML
    電子付録

    Transient absorption at 340 nm under alkaline conditions has long been used to detect the presence of 3-keto-O-glycosides without understanding the molecular basis of the absorbance. The time course of A340 nm for the alkaline treatment of 3-ketolevoglucosan, an intramolecular 3-keto-O-glycoside, was investigated to identify the three products generated through alkaline treatment. By comparing the spectra of these compounds under neutral and alkaline conditions, we identified 1,5-anhydro-D-erythro-hex-1-en-3-ulose (2-hydroxy-3-keto-D-glucal) as being the compound responsible for the absorption.

  • Yuichi Kashiwakura, Tomochika Sogabe, Sukritta Anantawittayanon, Takum ...
    2024 年 71 巻 1 号 p. 15-21
    発行日: 2024/03/20
    公開日: 2024/04/20
    ジャーナル オープンアクセス HTML
    電子付録

    Water-soluble carbohydrates commonly exist in an amorphous state in foods and undergo glass-rubber transition (glass transition) at the glass transition temperature (Tg). The critical water content (Wc) and critical water activity (awc) are the water content and water activity (aw) at which the glass transition occurs at 298 K (typical ambient temperature), respectively. For amorphous water-soluble carbohydrates, Wc can be predicted from the Tg of anhydrous solid (Tgs) using previously reported equations. However, an approach for predicting awc is still lacking. This study aimed to establish an awc-predictive approach for amorphous water-soluble carbohydrates based on Tgs. First, the water sorption isotherms of four hydrogenated starch hydrolysates were investigated, and the results were analyzed using the Guggenheim-Anderson-de Boer (GAB) model. Second, the effect of Tgs on the GAB parameters (C, K, and Wm) was evaluated using the Tgs values reported in previous literatures. C and Wm decreased and increased logarithmically, respectively, with increasing 1/Tgs. K was fixed to 1 (constant), as it showed little variation. These results enabled the prediction of the GAB parameters from Tgs. The GAB model could then predict awc from Wc, which was determined using the previously established equations. The predicted awc values were in good agreement with the experimentally determined awc. Additionally, we demonstrated that this awc-prediction approach is also applicable to amorphous water-soluble electrolytes and partially water-insoluble carbohydrates. Thus, this approach can be used for the quality control of amorphous water-soluble carbohydrates and carbohydrate-based foods.

  • Kuo Zhang, Sumiko Nakamura, Ken-ichi Ohtsubo, Toshiaki Mitsui
    2024 年 71 巻 1 号 p. 23-32
    発行日: 2024/03/20
    公開日: 2024/04/20
    ジャーナル オープンアクセス HTML
    電子付録

    The objective of this study was to characterize the endosperm starch in rice that ectopically overexpressed the α-amylase. Transgenic rice plants, transformed with cauliflower mosaic virus 35S promoter driven AmyI-1 (35S::AmyI-1) and AmyII-4 (35S::AmyII-4), and 10 kDa prolamin promoter driven AmyI-1 (P10::AmyI-1), were cultivated under standard conditions (23 °C, 12 h in the dark/ 26 °C, 12 h in the light), and brown grains were subsequently harvested. Each grain displayed characteristic chalkiness, while electron microanalyzer (EPMA)-SEM images disclosed numerous small pits on the surface of the starch granules, attributable to α-amylase activity. Fluorescence labeling and capillary electrophoresis analysis of starch chain length distribution revealed no significant alterations in the starches of 35S::AmyI-1 and 35S::AmyII-4 transgenic rice compared to the wild-type. Conversely, the extremely short α-glucan chains (DP 2-8) exhibited a dramatic increase in the P10::AmyI-1 starch. Rapid visco-analyzer analysis also identified variations in the chain length distribution of P10::AmyI-1 starch, manifesting as changes in viscosity. Moreover, 1H-NMR analysis uncovered dynamic modifications in the molecular structure of starch in rice grain transformed with P10::AmyI-1, which was found to possess unprecedented structural characteristics.

Note
feedback
Top