Journal of Oleo Science
Online ISSN : 1347-3352
Print ISSN : 1345-8957
ISSN-L : 1345-8957
73 巻, 2 号
選択された号の論文の16件中1~16を表示しています
Contents
Review
Oils and Fats
  • Siliang Ding, Xiaohan Chen, Bo Ouyang, Bo Yang, Weifei Wang, Yonghua W ...
    2024 年 73 巻 2 号 p. 135-145
    発行日: 2024年
    公開日: 2024/02/02
    ジャーナル オープンアクセス
    電子付録

    In the pursuit of reducing oil separation in peanut butter, oleogels synthesized from diacylglycerol (DAG)-rich peanut oils, using glycerol monostearate (GMS) as the gelator, were examined as alternative stabilizers. In comparison to triacylglycerol (TAG)-rich peanut oils, the DAG oil-based oleogels exhibited better oil-binding capacities across increasing GMS concentrations. Intriguingly, thermal and rheological assessments pointed to a weaker network structure in DAG oil oleogels, as evidenced by their lower crystallization temperatures and reduced viscoelastic parameters (G' and G''). Insight from infrared spectroscopy revealed that this could stem from heightened intermolecular hydrogen bonding between the DAG oil and the gelator. When applied to peanut butter, DAG oil oleogels demonstrated efficacy in minimizing oil separation. Extended storage trials affirmed the long-term stability of peanut butter formulations incorporating these oleogels. Furthermore, sensory evaluations by panelists underscored favorable impressions, suggesting potential consumer acceptance. Overall, this study illuminates the promising role of DAG oleogels as effective, alternative stabilizers in peanut butter formulations.

    graphical abstract Fullsize Image
  • Zhong-Wei Wu, Hong-Rui Huang, Shu-Qiang Liao, Xiao-Shuang Cai, Hua-Min ...
    2024 年 73 巻 2 号 p. 147-161
    発行日: 2024年
    公開日: 2024/02/02
    ジャーナル オープンアクセス

    Tigernut has been recognized as a promising resource for edible oil and starch. However, the research on the quality characteristics of tigernut from different regions is lagging behind, which limits the application of tigernut in food industry. Tigernut tubers were obtained from six major growing regions in China, and the physicochemical properties of their main components, oil and starch, were characterized. Tigernut tubers from Baoshan contained the most oil (30.12%), which contained the most β-carotene (130.4 µg/100 g oil) due to high average annual temperature. Gas chromatography analysis and fingerprint analysis results indicated that tigernut oil (TNO) consists of seven fatty acids, of which oleic acid is the major component. Changchun TNO contained the least total tocopherols (6.04 mg/100 g oil) due to low average annual temperature. Tigernut tubers from Chifeng (CF) contained the most starch (34.85%) due to the large diurnal temperature range. Xingtai starch contained the most amylose (28.4%). Shijiazhuang starch showed the highest crystallinity (19.5%). Anyang starch had the highest pasting temperature (76.0°C). CF starch demonstrated superior freeze-thaw stability (syneresis: 50%) due to low mean annual precipitation. The results could be further applied to support tigernut industries and relevant researchers that looks for geographical origin discrimination and improvements on tigernut quality, with unique physicochemical and technological properties.

    graphical abstract Fullsize Image
  • Yukiko Osawa, Daichi Kuwahara, Masaki Honda
    2024 年 73 巻 2 号 p. 163-168
    発行日: 2024年
    公開日: 2024/02/02
    ジャーナル オープンアクセス
    電子付録

    The effects of microwave drying conditions of a Paracoccus carotinifaciens culture solution on astaxanthin Z-isomerization and degradation were investigated. The microwave drying significantly increase the ratio of astaxanthin Z-isomers, and the higher the microwave power and the longer the drying time, the higher the total Z-isomer ratio of astaxanthin, but such conditions also accelerated astaxanthin degradation. We found that the addition of powdered oils enhanced the Z-isomerization reaction. For example, when the P. carotinifaciens culture solution was dried at 1000 W power for 5 min without and with powdered rapeseed oil, total Z-isomer ratios of astaxanthin in resulting dried powder were 14.9 and 47.4%, respectively. Furthermore, the storage test of the dried P. carotinifaciens powder showed that astaxanthin Z- isomers were stable at 4℃ in a low-oxygen atmosphere. As astaxanthin Z-isomers have greater bioavailability and potentially exhibit superior biological activities than the all-E-isomer, the dried P. carotinifaciens powder obtained by the method of this study is expected to be used as a value-added astaxanthin source.

    graphical abstract Fullsize Image
Detergents, Surfactants, Interface and Colloid
  • Hiroaki Kaga, Masanori Orita, Koji Endo, Masaaki Akamatsu, Kenichi Sak ...
    2024 年 73 巻 2 号 p. 169-176
    発行日: 2024年
    公開日: 2024/02/02
    ジャーナル オープンアクセス

    Skin disorders, including acne vulgaris, atopic dermatitis, and rosacea, are characterized by the presence of biofilms, which are communities of microorganisms. The mechanical stability of biofilms is attributed to one of their constituents—polysaccharides—which are secreted by microorganisms. Sophorolipids are biosurfactants with biofilm disruption and removal abilities and are expected to become alternatives for classical petrochemical-based surfactants in cosmetics.
    In this study, we investigated the influence of sophorolipids on β-glucan such as dispersion status, interaction mechanism, and configuration change as a model polysaccharide of biofilm in aqueous solution. Dynamic light scattering measurements showed that sophorolipids interfere with the aggregation of β- glucan in aqueous solutions. In contrast, sodium dodecyl sulfate (SDS), which is used as a typical surfactant reference, promotes the aggregation of β-glucan. The interaction between sophorolipids and β-glucan were investigated using surface tension measurements and isothermal titration calorimetry (ITC). Surface tension increased only near critical micelle concentration (CMC) region of sophorolipids in the presence of β-glucan. This suggests that the interaction occurred in the solution rather than at the air–liquid interface. Moreover, the results of ITC indicate that hydrophobic interactions were involved in this interaction. In addition, the results of optical rotation measurements indicate that sophorolipids did not unfold the triple helical structure of β-glucan. β-glucan dispersion was expected to be caused steric hindrance and electrostatic repulsion when sophorolipids interacted with β-glucan via hydrophobic interactions owing to the unique molecular structure of sophorolipids attributed by a bulky sugar moiety and a carboxyl functional group.
    These results demonstrated unique performances of sophorolipids on β-glucan and provided more insights on the efficacy of sophorolipids as good anti-biofilms.

    graphical abstract Fullsize Image
  • Yuka Sakata, Hiroyuki Mayama, Yoshimune Nonomura
    2024 年 73 巻 2 号 p. 177-186
    発行日: 2024年
    公開日: 2024/02/02
    ジャーナル オープンアクセス

    Moisturization causes physiological changes that improve the barrier function of human skin and mechanical changes, including skin friction characteristics. This study evaluated petrolatum- or silicone oil-treated human skin to determine the effect of moisturizing on the friction dynamics. The friction force on the human skin was measured using a contact probe with a sinusoidal motion. The contact probe was used to rub the skin of the upper arm of 20 subjects. The water content of the stratum corneum, softness, and barrier function of the skin were measured using a corneometer, cutometer, and tewameter, respectively. Both oils reduce the frictional force on the human skin. Simultaneously, silicone oil also reduced the delay time δ, which is the standardized time difference between the frictional force response to contact probe movement. Three typical friction patterns were also discovered, which were significantly changed by the treatment with oil. These changes were attributed to the lubrication effect and elimination of adhesion at the true contact point between the skin and the contact probe.

    graphical abstract Fullsize Image
Biochemistry and Biotechnology
  • Qian Yin, Hao Zhang, Ting Huang, Bin Liu, Sally Negm, Attalla F. El-ko ...
    2024 年 73 巻 2 号 p. 187-199
    発行日: 2024年
    公開日: 2024/02/02
    ジャーナル オープンアクセス
    電子付録

    One of the main goals of medicinal chemistry in recent years has been the development of new enzyme inhibitors and anti-cancer medicines. The isokaempferide' ability to inhibit the enzymes urease, elastase, and collagenase were also studied. The results showed that isokaempferide was the most effective compound against the assigned enzymes, with IC 50 values of 23.05 µM for elastase, 12.83 µM for urease, and 33.62 µM for collagenase respectively. It should be emphasized that natural compound was more effective at inhibiting some enzymes. Additionally, the compound was tested for their anti-cancer properties using colon, lung, breast cancer cell lines. The chemical activities of isokaempferide against urease, collagenase, and elastase were investigated utilizing the molecular docking study. The anti-cancer activities of the compound were evaluated against lung cancer cells such as SPC-A-1, SK-LU-1, 95D, breast cancer cells like MCF7, Hs 578Bst, Hs 319.T, and UACC-3133 cell lines, and colon cancer cell lines like CL40, SW1417, LS1034, and SW480. The chemical activities of isokaempferide against some of the expressed surface receptor proteins (EGFR, estrogen receptor, CD47, progesterone receptor, folate receptor, CD44, HER2, CD155, CXCR4, CD97, and endothelin receptor) in the mentioned cell lines were assessed using the molecular docking calculations. The results showed the probable interactions and their characteristics at an atomic level. The docking scores revealed that isokaempferide has a strong binding affinity to the enzymes and proteins. In addition, the compound formed powerful contact with the enzymes and receptors. Thus, isokaempferide could be potential inhibitor for enzymes and cancer cells.

    graphical abstract Fullsize Image
  • Chen Liu, Fu-sheng Chen
    2024 年 73 巻 2 号 p. 201-213
    発行日: 2024年
    公開日: 2024/02/02
    ジャーナル オープンアクセス

    Effects of dry and wet grind on peanut oil and protein yield, oil bodies (OBs) stability, fatty acid composition, protein composition and functional characteristics were systematically analyzed. Results showed that peanut oil and protein yields reached highest at dry grind 90 s (92.56% and 83.05%, respectively), while peanut oil and protein yields were 94.58% and 85.36%, respectively, at wet grind 120 s. Peanut oil and protein yields by wet grind was 2.18% and 2.78% higher than that of dry grind, respectively. Surface protein concentration (Г) and absolute value of zeta potential of OBs extracted by wet grind (WOBs) were 11.53 mg/m 2 and 18.51 mV, respectively, which were higher than OBs extracted by dry grind (DOBs), indicating stability of WOBs was higher than DOBs. Relative contents of oleic acid and linoleic acid in peanut oil, essential and hydrophobic amino acids in protein extracted by wet grind were higher than dry grind. There was little difference in protein composition between wet and dry grind, but thermal denaturation degree of protein obtained by wet grind was lower than dry grind. Solubility, oil retention, emulsion stability, foaming and foam stability of protein obtained by wet grind were better than dry grind. Results from this study provided theoretical basis for grind pretreatment selection of aqueous enzymatic method.

    graphical abstract Fullsize Image
  • Hak-Ryul Kim, In-Hwan Kim
    2024 年 73 巻 2 号 p. 215-218
    発行日: 2024年
    公開日: 2024/02/02
    [早期公開] 公開日: 2024/01/16
    ジャーナル オープンアクセス

    Microbial conversion of some natural unsaturated fatty acids can produce polyhydroxy fatty acids, giving them new properties, such as higher viscosity and reactivity. Pseudomonas aeruginosa has been intensively studied to produce a novel 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) from oleic acid and natural vegetable oils containing oleic acid. Recently, the antibacterial activities of DOD against food-borne pathogenic bacteria were reported; however, the action of such antibacterial properties against eucaryotic cells remains poorly known. In this study, we determined the antifungal activities of DOD against Malassezia furfur KCCM 12679 quantitatively and qualitatively. The antifungal activity of DOD against M. furfur KCCM 12679 was approximately five times higher than that of ketoconazole, a commercial antifungal agent. The MIC 90 value of DOD against M. furfur KCCM 12679 was 50 µg/mL. In addition, we confirmed that the antifungal property of DOD was exerted through fungicidal activity.

    graphical abstract Fullsize Image
Medical Chemistry
  • Xuelian Yu, Qihu Wang, Zhaoxin Dai
    2024 年 73 巻 2 号 p. 219-230
    発行日: 2024年
    公開日: 2024/02/02
    ジャーナル オープンアクセス
    電子付録

    Ginsenosides Rg3 and Rg5 obtained from Panax (ginseng) have shown significant anticancer activity via the PI3K-Akt signaling pathway. This study evaluated the anticancer and antimetastatic effects of a combination of Rg3 and Rg5 on lung cancer cells. A combination of Rg3 and Rg5 was treated for lung cancer cell line A549 and human lung tumor xenograft mouse model, and anti-metastatic effects on Matrigel plug implantation in mice. The combination of Rg3 and Rg5 showed potent antiproliferative effects on A549 cells with IC50 values of 44.6 and 36.0 μM for Rg3 and Rg5 respectively. The combination of Rg3 and Rg5 (30 µM each) showed 48% cell viability as compared to Rg3 (72% viability) and Rg5 (64% viability) at 30 µM concentrations. The combination of Rg3 and Rg5 induced apoptosis in A549 cells characterized by activation of caspase-9 and caspase-3 and cleavage of PARP, as well as suppression of the autophagic marker LC3A/B. The antitumoral potentials of the combination of Rg3 and Rg5 were ascertained in a lung tumor xenograft mouse model with high efficacy as compared to individual ginsenosides. The metastasislimiting properties of the combination of Rg3 and Rg5 were assessed in Matrigel plug implantation in mice which showed the potent efficacy of the combination as compared to individual ginsenoside. Mechanistically, the combination of Rg3 and Rg5 inhibited the expression of PI3K/Akt/mTOR and EGFR/VEGF signaling pathways in lung cancer cells. Results suggest that the combination of Rg3 and Rg5 suppressed the tumor cell proliferation in lung cancer cells and limited the rate of metastasis which further suggest that the combination has a significant effect as compared to the administration of single ginsenoside.

    graphical abstract Fullsize Image
Nutrition, Health Function and Food Science
  • Yasunari Kato, Masami Sakoh, Toshiharu Nagai, Akihiko Yoshida, Hideaki ...
    2024 年 73 巻 2 号 p. 231-237
    発行日: 2024年
    公開日: 2024/02/02
    ジャーナル オープンアクセス

    Chronic inflammation and insulin resistance lead to metabolic syndrome and there is an urgent need to establish effective treatments and prevention methods. Our previous study reported that obese model Zucker (fa/fa) rats fed with ozonated olive oil alleviated fatty liver and liver damage by suppressing inflammatory factors. However, differences among animal species related to the safety and efficacy of ozonated olive oil administration remain unclear. Therefore, this study investigated the effects of oral intake of ozonated olive oil on lipid metabolism in normal mice and mice in the obesity model. C57BL/6J and db/db mice were fed the following AIN-76 diets for four weeks: the mice were either fed a 0.5% olive oil diet (Control diet) or 0.5% ozonated olive oil diet (Oz-Olive diet) in addition to 6.5% corn oil. The results indicated that four weeks of Oz-Olive intake did not adversely affect growth parameters, hepatic lipids or serum parameters in normal C57BL/6J mice. Subsequent treatment of db/db mice with Oz-Olive for four weeks reduced the levels of hepatic triglycerides, serum alkaline phosphatase, and serum insulin. These effects of Oz-Olive administration might be due to suppression of fatty acid synthesis activity and expression of lipogenic genes, as well as suppression of inflammatory gene expression. In conclusion, this study confirmed the safety of Oz-Olive administration in normal mice and its ability to alleviate hepatic steatosis by inhibiting fatty acid synthesis and inflammation in obese mice.

    graphical abstract Fullsize Image
  • Lili He, Daren Wu, Jingwen Liu, Guiling Li, Chaoxiang Chen, Emad Karra ...
    2024 年 73 巻 2 号 p. 239-251
    発行日: 2024年
    公開日: 2024/02/02
    ジャーナル オープンアクセス

    Frog oil has been recognized for its nutritional and medicinal value. However, there is limited research on the role of frog oil in preventing obesity. In this study, we aimed to investigate the lipid composition of Quasipaa spinosa oil (QSO) and Rana catesbeiana oil (RCO) using lipidomics analysis. We compared the lipid accumulation effects of these two kinds of frog oils and soybean oil (SO) in Caenorhabditis elegans (C. elegans). Additionally, we determined the gene expression related to lipid metabolism and used the nhr-49 mutant (RB1716) and sir-2.1 mutant (VC199) for validation experiments. The results showed that the lipid composition of QSO and RCO was significantly different (p < 0.05), and QSO was rich in more polyunsaturated fatty acids (PUFAs). After feeding C. elegans, the lipid accumulation of the QSO group was the lowest among the three dietary oil groups. In addition, compared with RCO and SO, QSO significantly inhibited the production of malondialdehyde (MDA) and increased the activity of superoxide dismutase (SOD). The effects of three kinds of dietary oils on the fatty acid composition of C. elegans were significantly different. Compared with SO and RCO, QSO significantly up-regulated (p < 0.05) the expression of sir-2.1 and ech-1 genes. The results showed that QSO might reduce lipid accumulation through the SIRT1 and nuclear hormone signaling pathways. Such a situation was verified experimentally by the nhr-49 mutant (RB1716) and sir-2.1 mutant (VC199). This study proposed a new functional oil, laying the groundwork for developing functional foods from Quasipaa spinosa.

    graphical abstract Fullsize Image
Chemistry and Organic Synthesis
Essential Oils and Natural Products
  • Fatma Elshibani, Abdullah Alamami, Riaz Khan, Ghassan M. Sulaiman, Ham ...
    2024 年 73 巻 2 号 p. 263-273
    発行日: 2024年
    公開日: 2024/02/02
    [早期公開] 公開日: 2024/01/16
    ジャーナル オープンアクセス

    Haplophyllum tuberculatum (Forssk.) A.Juss. volatile oils were obtained by distillation of the aerial parts of the plant growing in Libya during the summer and spring seasons. A yield and componential analysis revealed that the summer season oil, which is frequently used in traditional medicaments by North African communities, was high in yield (0.858%) compared to the spring season oil (0.47%), and distinguished by the presence of major and various diverse constituents, some of which are considered chemical markers. Owing to the traditional and high incidence of use of the summer-produced essential oil for the treatment of several disorders, including hepatic diseases, and fatigue, the oil was pharmacologically investigated for its varied bioactivities of anti-microbial, in vivo anti-oxidant, and in vitro anti-cancer properties. Thirty-three compounds were identified and represented 96.2% of the peaks in the GCchromatogram of the summer oil, in which the major volatile constituents were δ-3-carene (21.5%), bornyl acetate (16.9%), and limonene aldehyde (15.2%). The summer-based essential oil of the plant demonstrated moderate anti-bacterial activity against Gram-positive bacteria and a relatively strong antibacterial effect against Gram-negative bacteria as compared to the positive antibacterial controls, ampicillin and gentamicin, respectively. Also, antifungal activity against Aspergillus sp. was observed. The summerproduced oil also exhibited in vivo antioxidant and in vitro anti-cancer activities.

    graphical abstract Fullsize Image
Errata
feedback
Top