Many therapeutic antibodies have been approved since the late 1990s, and these agents represent a major new class of drugs. However, there still remains room for improvement in the clinical effect and cost of therapeutic antibodies licensed on the market. Most therapeutic antibodies, which currently have been developed as medical agents, are human IgG1 whose molecular weight is approximately 150kDa. Human IgG1 is a glycoprotein bearing two
N-linked oligosaccharides bound to the antibody constant region (Fc), and exercises its effector functions of antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) through the interaction of the Fc with either lymphocyte receptors (FcγRs) or complements. Recently, therapeutic antibodies have been shown to improve overall survival as well as time to disease progression in a variety of human malignancies such as breast, colon and haematological cancers (1-4), and genetic analysis of FcγR polymorphisms of cancer patients has demonstrated that ADCC is a major anti-neoplasm mechanism responsible for the clinical efficacy of anti-CD20 antibody Rituxan
R (rituximab) and anti-Her2 antibody Herceptin
R (trastuzumab) (5-9). Thus, there are currently numerous efforts to improve ADCC of therapeutic antibodies. We have found that the removal of fucose residues from the biantennary complex-type oligosaccharides attached to the Fc dramatically enhances the ADCC of the IgG due to improved FcγARIIIa binding (10-17), and have developed the technology, designated as Potelligent
TM, to control the fucosylation of therapeutic antibodies (18, 19). Application of this technology has now started for the development of the next generation of more effective therapeutic antibodies.
View full abstract