The Journal of General and Applied Microbiology
Online ISSN : 1349-8037
Print ISSN : 0022-1260
ISSN-L : 0022-1260
Current issue
Showing 1-6 articles out of 6 articles from the selected issue
Full Papers
  • Daiki Tanaka, Ken-ichiro Ohnishi, Seiya Watanabe, Satoru Suzuki
    Type: research-article
    2021 Volume 67 Issue 2 Pages 47-53
    Published: 2021
    Released: June 03, 2021
    [Advance publication] Released: November 28, 2020
    JOURNALS FREE ACCESS
    Supplementary material

    Most animals cannot digest cellulose but have symbiotic microbes that degrade the matrix polysaccharides of plant matter. Herbivorous and omnivorous marine fish are similarly expected to rely on symbiotic microbes, but reports to date on cellulase-producing bacteria in fish intestines are limited. Here, we report the isolation of new cellulase-producing bacteria from the marine omnivorous teleost, blackfish (Girella melanichthys), and the characterization of cellulase activity. Three strains of cellulase-producing bacteria sp. were isolated from the hindgut of wild G. melanichthys. The strains of cellulase-producing bacteria grew in medium with artificial seawater but not in NaCl alone. Growth was optimum at 20–35°C, but there was no growth at 40°C, suggesting adaptation in a marine environment at a low temperature. Isolates were identified to Microbulbifer sp., among which GL-2 strain produced a high enzyme activity. The GL-2 strain was further used for enzyme characterization with carboxymethyl cellulose (CMC) as the substrate. Maximum activity of the cellulase was observed at 60°C, and activity was more than 30% at 20°C, while commercial cellulase Enthiron showed an optimum activity at 50°C and 17% activity at 20°C. Hydrolytic products by GL-2 cellulase were cellobiose but not glucose, suggesting a deficiency of β-glucosidase activity. Active gel electrophoresis containing CMC showed five bands, suggesting several cellulolytic enzymes. The GL-2 strain and its enzyme are potential probiotics for aquaculture fish and the industrial production of cellobiose.

    Download PDF (1074K)
  • Yuki Sugimoto, Shinji Masuda
    Type: research-article
    2021 Volume 67 Issue 2 Pages 54-58
    Published: 2021
    Released: June 03, 2021
    [Advance publication] Released: December 21, 2020
    JOURNALS FREE ACCESS

    Phototaxis is a phenomenon where cyanobacteria move toward a light source. Previous studies have shown that the blue-light-using-flavin (BLUF)-type photoreceptor PixD and the response regulator-like protein PixE control the phototaxis in the cyanobacterium Synechocystis sp. PCC 6803. The pixD-null mutant moves away from light, whereas WT, pixE mutant, and pixD pixE double mutant move toward the light. This indicates that PixE functions downstream of PixD and influences the direction of movement. However, it is still unclear how the light signal received by PixD is transmitted to PixE, and then subsequently transmitted to the type IV pili motor mechanism. Here, we investigated intracellular localization and oligomerization of PixD and PixE to elucidate mechanisms of phototaxis regulation. Blue-native PAGE analysis, coupled with western blotting, indicated that most PixD exist as a dimer in soluble fractions, whereas PixE localized in ~250 kDa and ~450 kDa protein complexes in membrane fractions. When blue-native PAGE was performed after illuminating the membrane fractions with blue light, PixE levels in the ~250 kDa and ~450 kDa complexes were reduced and increased, respectively. These results suggest that PixE, localized in the ~450 kDa complex, controls activity of the motor ATPase PilB1 to regulate pilus motility.

    Download PDF (453K)
  • Jiajia Yu, Mengqi Jia, Yongjun Feng
    Type: research-article
    2021 Volume 67 Issue 2 Pages 59-66
    Published: 2021
    Released: June 03, 2021
    [Advance publication] Released: January 29, 2021
    JOURNALS FREE ACCESS

    Pantoea agglomerans YS19 is a dominant endophytic bacterium isolated from rice, which is capable of promoting host plant growth by nitrogen-fixing and phytohormone secreting. We previously found that the cytidine repressor (CytR) protein conducts the regulation of indole signal in YS19. Here, we compared the whole-cell protein of the wild type YS19 and the ΔcytR mutant and subsequently identified one differential protein as alkyl hydroperoxide reductase subunit C related to oxidative stress and sulfur starvation tolerance. It was tested that cytR had a positive effect on the survival of YS19 under the oxidative stress and sulfur starvation conditions and this effect was inhibited by indole. To further understand the functional mode of indole in this regulation, we cloned the cytR promoter region (PcytR) of YS19 and tested the effect of indole on PcytR using gfp as a reporter gene. It was found that PcytR can sense indole and significantly inhibit the expression of the downstream gene. This study provided a deeper understanding of the multiple function of cytR and expanded a new research direction of how indole participates in gene regulation.

    Download PDF (606K)
  • Naotaka Tanaka, Akinari Kagami, Keisuke Hirai, Shotaro Suzuki, Shi ...
    Type: research-article
    2021 Volume 67 Issue 2 Pages 67-76
    Published: 2021
    Released: June 03, 2021
    [Advance publication] Released: February 03, 2021
    JOURNALS FREE ACCESS

    The gmn2 mutant of Schizosaccharomyces pombe has previously been shown to exhibit defects in protein glycosylation of N-linked oligosaccharides (Ballou, L. and Ballou, CE., Proc. Natl. Acad. Sci. USA, 92, 2790–2794 (1995)). Like most glycosylation-defective mutants, the S. pombe gmn2 mutant was found to be sensitive to hygromycin B, an aminoglycoside antibiotic. As a result of complementation analysis, the gmn2+ gene was found to be a single open reading frame that encodes a polypeptide of 373 amino acids consisting of multiple membrane-spanning regions. The Gmn2 protein shares sequence similarity with Kluyveromyces lactis and Saccharomyces cerevisiae Erd1 proteins, which are required for retention of luminal endoplasmic reticulum (ER) proteins. Although disruption of the gmn2+ gene is not lethal, the secreted glycoprotein showed a significant glycosylation defect with destabilization of the glycosyltransferase responsible for N-glycan elongation. It was also shown that a significant amount of BiP was missorted to the cell surface according to ADEL receptor destabilization. Fluorescent microscopy revealed that the functional Gmn2-EGFP fusion protein is mainly localized in the Golgi membrane. These results indicate that the Gmn2 protein is required for protein glycosylation and for retention of ER-resident proteins in S. pombe cells.

    Download PDF (827K)
Short Communications
  • Yasuko Araki, Masanobu Yuzuki, Yosuke Masakari, Atsushi Sato, Keik ...
    Type: research-article
    2021 Volume 67 Issue 2 Pages 77-80
    Published: 2021
    Released: June 03, 2021
    [Advance publication] Released: December 09, 2020
    JOURNALS FREE ACCESS
    Supplementary material

    Filamentous fungi, including Aspergillus sojae, are essential for the industrial production of enzymes. Although multi-copy introduction of a gene encoding the protein of interest is useful for increasing protein production, this method has not been established in the case of filamentous fungi. In this study, we aimed to establish an efficient system for multi-copy chromosomal integration and high-level expression of a heterologous gene in A. sojae using an attenuated selectable marker. Consequently, by truncating the promoter region of selectable markers, we efficiently introduced multiple copies of a heterologous gene and enhanced the rate of high-level protein-production in the strains. Since the multi-copy strains obtained in this study maintained high productivity even in a non-selective medium, this system could be applicable for industrial protein production.

    Download PDF (113K)
  • Hye-Jin Lee, Yong-Ku Woo, Byung-Kook Choi, Ok-Mi Jeong, Jin-Hyun ...
    Type: research-article
    2021 Volume 67 Issue 2 Pages 81-84
    Published: 2021
    Released: June 03, 2021
    [Advance publication] Released: January 22, 2021
    JOURNALS FREE ACCESS

    A total of 116 Escherichia coli isolates from cecal contents of 81 indigenous wild birds in Korea were tested for antimicrobial susceptibility. Seventy-one isolates from sparrows (Passer montanus) and one isolate from doves (Columba livia) were resistant to three antimicrobials, including streptomycin, sulfonamide, and tetracycline (SSuT). PCR and subsequent sequence analysis revealed the SSuT gene cluster region (approximately 13 kb) harboring genes encoding resistance to streptomycin (strA and strB), sulfonamide (sul2), and tetracycline (tetB, tetC, tetD, and tetR). In particular, tetracycline resistance genes were located on the transposon Tn10-like element. The SSuT element-harboring E. coli can be an important source of the transmission of antimicrobial resistance to other pathogenic bacteria. Therefore, strict sanitary measures in human and animal environments are necessary to prevent the spread of resistant bacteria through fecal residues of wild birds.

    Download PDF (164K)
feedback
Top