The Journal of General and Applied Microbiology
Online ISSN : 1349-8037
Print ISSN : 0022-1260
ISSN-L : 0022-1260
Volume 68, Issue 6
Displaying 1-6 of 6 articles from this issue
Full Papers
  • Qiong Deng, Zhu Wang, Pengmei Wu, Hui Liang, Haixia Wu, Lirong Zhang, ...
    Article type: research-article
    2022 Volume 68 Issue 6 Pages 253-261
    Published: 2022
    Released on J-STAGE: March 06, 2023
    Advance online publication: July 09, 2022
    JOURNAL FREE ACCESS
    Supplementary material

    Mycoplasma pneumoniae is one of the most important pathogens causing community acquired pneumonia in children, and the pathogenic mechanism of M. pneumoniae infection is complex. Azithromycin is an effective agent for treating the acquired lower respiratory tract infection and urogenital tract infection with slight adverse reactions. This study aimed to compare the intestinal microflora before (PP1) and after azithromycin intervention (PP2) in children with pneumonia caused by M. pneumoniae, combined with body fluid biochemical analysis to determine the intestinal flora affecting the progress of the disease. Fifteen children diagnosed with M. pneumoniae pneumonia were recruited. The fecal samples and clinical biochemical data were collected. 16S rRNA gene amplicon sequencing and bioinformatics analysis were conducted by the Beijing Genomics Institute. The operational taxonomic unit abundance analysis showed significant differences between the two groups. The species richness analysis showed differences in class, family, genus, order, species, and phylum. The abundance of Haemophilus, Pasteurellales, and Pasteurellaceae was found to be significantly higher in the PP1 group. The Pearson correlation analysis showed that the microbes strongly correlated with the clinical features. 16S rRNA gene sequencing data revealed altered composition of gut microbiota in children with M. pneumoniae pneumonia treated with azithromycin. The altered expression of microbes correlated with clinical features, which might help diagnose and treat the disease.

    Download PDF (6472K)
  • Vu Dinh Giap, Hoang Thanh Duc, Pham Thi Mai Huong, Do Thi Hanh, Do H ...
    Article type: research-article
    2022 Volume 68 Issue 6 Pages 262-269
    Published: 2022
    Released on J-STAGE: March 06, 2023
    Advance online publication: July 02, 2022
    JOURNAL FREE ACCESS

    From the biotechnological point of view, enzymes are powerful tools that help sustain a clean environment in several ways. The enzymatic biodegradation of synthetic dyes is a promising goal since it reduces pollution caused by textile dyeing factory wastewater. Lignin peroxidase (EC 1.11.1.14, LiP) has high redox potential; thus, it is great for application in various industrial fields (e.g., paper- waste treatment and textile dyeing wastewater treatment). In the present study, a LiP from an isolated strain Pleurotus pulmonarius CPG6 (PpuLiP) was successfully purified with a specific activity of 6.59 U mg -1. The enzyme was purified by using three-step column chromatography procedures including DEAE, Sephadex G-75, and HiTrapTM Q FF columns with 17.8-fold purity. The enzyme with a molecular weight of 40 kDa exhibited enhanced pH stability in the acidic range. The activity retention was over 75% at a pH of 3.0 for more than 6 hours. Purified PpuLiP was able to oxidize a variety of substrates including veratryl alcohol, 2,4-DCP, n propanol, and guaiacol. The effect of metal ions on PpuLiP activity was analyzed. The study will provide a ground to decolorize dyes from various groups of PpuLiP. Purified PpuLiP could decolorize 35% Acid blue 25 (AB25), 50% Acid red 129 (AB129), 72% Acid blue 62 (NY3), 85% Acid blue 113 (AB113), 55% Remazol Brilliant blue R (RBBR), and 100% Reactive red 120 (RR120) for 12 hours. Most of the dyes were decolorized, but the heat-denatured enzyme used as negative control obviously did not decolorize the tested dyes. These results indicate that the PpuLiP has potential application in enzyme-based decolorization of synthetic dyes. Keywords: Decolorization; lignin peroxidase; Pleurotus pulmonarius; textile dyes.

    Download PDF (1554K)
  • Teppei Maruyama, Kanako Hayashi, Kotaro Matsui, Yasukichi Maekawa, Tak ...
    Article type: research-article
    2022 Volume 68 Issue 6 Pages 270-277
    Published: 2022
    Released on J-STAGE: March 06, 2023
    Advance online publication: July 02, 2022
    JOURNAL FREE ACCESS
    Supplementary material

    Fission yeast, Schizosaccharomyces pombe, possesses eight hexose transporters, Ght1~8. In order to clarify the role of each hexose transporter on glucose uptake, a glucose uptake assay system was established and the actual glucose uptake activity of each hexose transporter-deletion mutant was measured. Under normal growth condition containing 2% glucose, ∆ght5 and ∆ght2 mutants showed large and small decrease in glucose uptake activity, respectively. On the other hand, the other deletion mutants did not show any decrease in glucose uptake activity indicating that, in the presence of Ght5 and Ght2, the other hexose transporters do not play a significant role in glucose uptake. To understand the relevance between glucose uptake and lifespan regulation, we measured the chronological lifespan of each hexose transporter deletion mutant, and found that only ∆ght5 mutant showed a significant lifespan extension. Based on these results we showed that Ght5 is mainly involved in the glucose uptake in Schizosaccharomyces pombe, and suggested that the ∆ght5 mutant has prolonged lifespan due to physiological changes similar to calorie restriction.

    Download PDF (3303K)
  • Ruijie Wang, Manabu Arioka
    Article type: research-article
    2022 Volume 68 Issue 6 Pages 278-286
    Published: 2022
    Released on J-STAGE: March 06, 2023
    Advance online publication: July 21, 2022
    JOURNAL FREE ACCESS
    Supplementary material

    Glucuronoyl esterase (GE) is a promising agent for the delignification of plant biomass since it has been shown to cleave the linkage between xylan and lignin in vitro. In this study, we demonstrate that NcGE, a GE from Neurospora crassa, stimulates plant biomass degradation. In vitro, NcGE synergistically increased the release of reducing sugars from plant biomass when added together with cellulase or xylanase. In vivo, overexpression of NcGE in N. crassa resulted in an increase in xylanolytic activity. Consistently, elevated transcription of genes encoding the major plant biomass degrading-enzymes (PBDEs) was observed in the NcGE overexpression strain. Increased xylanolytic activity and transcription of PDBE genes were largely abolished when the transcription factors clr-1, clr-2, or xlr-1 were deleted. Interestingly, the expression of some PBDE genes was increased when the hydrolysate of plant biomass by NcGE was added to the culture medium. We propose that NcGE boosts the production of PBDEs through the activation of key transcription factors, which is presumably caused by NcGE-mediated generation of hypothetical inducer(s) from plant biomass.

    Download PDF (1172K)
  • Sarunpron Khruengsai, Teerapong Sripahco, Patcharee Pripdeevech
    Article type: research-article
    2022 Volume 68 Issue 6 Pages 287-294
    Published: 2022
    Released on J-STAGE: March 06, 2023
    Advance online publication: August 04, 2022
    JOURNAL FREE ACCESS

    Low-density polyethylene (LDPE) has been commercially used and accumulated as plastic solid waste. LDPE has also been found to be a non-degradable waste for decades and found as a pollution source in the environment. In this study, 65 fungi were screened for their biodegradation of LDPE. The fungi Neopestalotiopsis phangngaensis, Alternaria burnsii, Alternaria pseudoeichhorniae, and Arthrinium sacchari showed significant potential in LDPE biodegradation. These fungi were individually cultured with an LDPE sheet as a carbon source for 90 days. A maximum weight loss of the LDPE sheet was detected by the fungus N. phangngaensis (54.34%). This fungus also revealed the highest reduction rate of tensile strength of the LDPE sheet (0.33 MPa). The morphological surface of LDPE culturing with N. phangngaensis was crack, pit, and rough analyzed by scanning electron microscopy. The biodegradation of the LDPE sheet by N. phangngaensis was also confirmed by the Sturm test and analysis of enzymatic activities. The Sturm test showed the highest decomposition of the LDPE sheet by N. phangngaensis into CO2 with 2.14 g/L after incubation. Enzymatic activities of laccase, manganese peroxidase, and lignin peroxidase enzymes were found by N. phangngaensis during the LDPE degradation. The volatile organic compounds in culture supernatant of N. phangngaensis were also investigated. The major compounds were 3Z-diethyl acetal hexenal, 2E,4E-decadienol, and 2Z-diethyl acetal hexenal. This study reveals the utilization of the fungus N. phangngaensis as the carbon source at a considerable biodegradation rate without any prior treatment. Therefore, the fungus N. phangngaensis may be applied as an alternative degrader for LDPE degradation in the environment.

    Download PDF (1604K)
  • Tomoko Fujiwara, Atsuko Matsura, Momoka Fukuda, Katsuaki Kuroki, Tomoo ...
    Article type: research-article
    2022 Volume 68 Issue 6 Pages 295-302
    Published: 2022
    Released on J-STAGE: March 06, 2023
    Advance online publication: August 08, 2022
    JOURNAL FREE ACCESS
    Supplementary material

    There is currently great interest in the salt-tolerant yeast strains used to produce miso and soy sauce. Since the isolation of Zygosaccharomyces sp. strain from Japanese miso more than 60 years, several hybrid strains have been identified in fermented foods. Studies have shown that the active mating-type locus of the original Zygosaccharomyces sp. yeast strain is located between the T-subgenome sequence and the P-subgenome sequence. In this study, 32 salt-tolerant Zygosaccharomyces sp. yeast strains were isolated from five miso factories in Hiroshima Prefecture, Japan. Analysis by flow cytometry revealed that 27 strains were diploid and five strains were haploid. PCR analysis indicated that the 27 diploid strains had the same chromosomal structure of the active mating-type (MAT) locus as the original yeast strain isolated from miso 60 years ago. In addition, the 27 diploid strains were allodiploid, namely, natural hybrids of Z. rouxii and a related species, while the five haploid strains were all Z. rouxii. We found that cells of yeast strains isolated from miso changed morphologically when co-cultured with a yeast strain of opposite mating-type under nitrogen starvation conditions. The DNA sequence of the active mating-type locus and the results of cell morphology changes by co-culture were consistent with the mating type of each strain shown in the mating experiments. These findings will be useful for the future production of miso and soy sauce.

    Download PDF (9627K)
feedback
Top