The Journal of Toxicological Sciences
Online ISSN : 1880-3989
Print ISSN : 0388-1350
ISSN-L : 0388-1350
Volume 45, Issue 6
Displaying 1-5 of 5 articles from this issue
Original Article
  • Nivedita Chatterjee, Jinhee Choi
    2020 Volume 45 Issue 6 Pages 305-317
    Published: 2020
    Released on J-STAGE: June 04, 2020
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material

    The aim of the present study was to evaluate the underlying mechanism of multi-walled carbon nanotubes (MWCNT) induced cellular response and their potential cross-talk, specifically, between endoplasmic reticulum (ER) stress, MAPK activation and apoptosis and how these nano-bio interactions depend on the physico-chemical properties of MWCNT. For this purpose, human bronchial epithelial (Beas2B) and human hepatoma (HepG2) cell lines, were exposed to five kinds of MWCNTs which differ in functionalization and aspect ratios. Tissue-specific sensitivity was evident for calcium homeostasis, ER-stress response, MAPK activation and apoptosis, which further depended on surface functionalization as well as aspect ratios of MWCNT. By applying specific pharmaceutical inhibitors, relevant biomarkers gene and proteins expressions, we found that possibly MWCNT induce activation of IRE1α-XPB1 pathway-mediated ER-stress response, which in turn trigger apoptosis through JNK activation in both type of cells but with variable intensity. The information presented here would have relevance in better understanding of MWCNT toxicity and their safer applications.

Original Article
  • Hideaki Yokoyama, Norimichi Hattori, Hirohiko Ohtsuka, Eiji Murata, Ak ...
    2020 Volume 45 Issue 6 Pages 319-325
    Published: 2020
    Released on J-STAGE: June 04, 2020
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material

    Due to finalization of the ICH S3A Q&A focusing on microsampling, application of microsampling technique to regular non-clinical animal studies is expected for non-clinical safety assessment of pharmaceuticals. In Europe, microsampling from the tail vein or saphenous vein has often been used, whereas sampling from the jugular vein is thought to be more common for non-clinical studies in Japan. Therefore, we assessed the toxicological effects of serial microsampling from the jugular vein of SD rats in a common 28-day study at 4 independent organizations. Fifty microliter sampling was performed at 6 timepoints on day 1 to 2 and 7 timepoints on day 27 to 28 and its toxicological influences on body weight, food consumption, hematological and clinical chemistry parameters, and organ weights (on day 29 for 3 and day 28 for 1 organizations) were evaluated. The serial microsampling was shown to have no or minimal influences on the assessed parameters. The observed statistical differences for the 18 parameters were sporadic and did not appear to be systemically associated with microsampling. However, the sporadic changes were more often observed in females (14/18 parameters) than in males (6/18), suggesting the possibility that female rats were more susceptible to treatment-based influences. The current results indicate that serial 50 μL sampling from the jugular vein of SD rats had no or very slight toxicological effects, suggesting that this microsampling condition is applicable for toxicokinetic evaluation of non-clinical rat toxicity studies.

Letter
  • Yasutaka Kuroda, Takuo Yuki, Yutaka Takahashi, Hitoshi Sakaguchi, Kayo ...
    2020 Volume 45 Issue 6 Pages 327-337
    Published: 2020
    Released on J-STAGE: June 04, 2020
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material

    Hydrolyzed wheat proteins (HWPs) contained in cosmetics have occasionally caused immediate-type hypersensitivity following repeated skin exposure. Although the Cosmetic Ingredient Review Expert Panel concluded that < 3,500 Da HWP is safe for use in cosmetics, it remains biologically unknown how allergenic HWPs evoke immediate-type allergy percutaneously. Keratinocyte-derived thymic stromal lymphopoietin (TSLP) induces type 2 immune responses, which play an essential role in the pathogenesis of immediate-type allergy. Previously, we demonstrated that protein allergens in cultured human keratinocytes strongly induced long-form TSLP (loTSLP) transcription. However loTSLP-regulating signaling by HWP is poorly understood. In this study, we performed global gene expression analysis by microarray to investigate how the allergenic HWP acts on epidermal keratinocytes and the induction of loTSLP. Compared to human serum albumin (HSA), allergenic HWP induced a distinct gene expression pattern and preferentially activated various inflammatory pathways (High Mobility Group Box 1, Interleukin [IL]-6, IL-8, and acute phase response signaling). We identified 85 genes as potential nuclear factor-kappa B (NF-κB) target genes in GP19S-treated cells, compared with 29 such genes in HSA-treated cells. In addition, HWP specifically altered IL-17 signaling pathways in which transcription factors, NF-κB and activator protein-1, were activated. NF-κB signaling may be an important factor for HWP-induced inflammatory loTSLP transcription via inhibition assay. In conclusion, allergenic HWP caused an easily sensitizable milieu of activated inflammatory pathways and induced NF-κB-dependent loTSLP transcription in keratinocytes.

Original Article
  • Kazunori Fujimoto, Hiroyuki Kishino, Kazuyuki Hashimoto, Kyoko Watanab ...
    2020 Volume 45 Issue 6 Pages 339-347
    Published: 2020
    Released on J-STAGE: June 04, 2020
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material

    The metabolomic profiles of rat primary hepatocytes following treatment with rotenone, FCCP, or (+)-usnic acid were determined using liquid chromatography-mass spectrometry/mass spectrometry and gas chromatography-mass spectrometry. Significant and similar changes in the levels of 283 biochemical metabolites were associated with the three treatments compared with solvent control samples. Overall, the three treatments generated similar global biochemical profiles, with some minor differences associated with rotenone treatment. All three treatments resulted in a shift in energy metabolism as demonstrated by decreased glycogen stores and glycolysis. A reduced antioxidant response was detected in cells following all treatments. In addition, bile acid biosynthesis decreased as a potential consequence of increased oxidative stress by all three treatments. Conversely, rotenone treatment induced a number of changes after 1 hr, which were not detected in FCCP- or (+)-usnic acid-treated samples; these changes were not sustained over time and included increased NAD+ salvage and lysine degradation. In conclusion, these biochemical profiles could provide new insights into the mechanism(s) of mitochondrial toxicity.

Original Article
  • Nho Cong Luong, Yumi Abiko, Takahiro Shibata, Koji Uchida, Eiji Warabi ...
    2020 Volume 45 Issue 6 Pages 349-363
    Published: 2020
    Released on J-STAGE: June 04, 2020
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material

    9,10-Phenanthrenequinone (9,10-PQ) is a polycyclic aromatic hydrocarbon quinone contaminated in diesel exhaust particles and particulate matter 2.5. It is an efficient electron acceptor that induces redox cycling with electron donors, resulting in excessive reactive oxygen species and oxidized protein production in cells. The current study examined whether 9,10-PQ could activate epidermal growth factor receptor (EGFR) signaling in A431 cells through S-oxidation of its negative regulators such as protein tyrosine phosphatase (PTP) 1B. 9,10-PQ oxidized recombinant human PTP1B at Cys215 and inhibited its catalytic activity, an effect that was blocked by catalase (CAT), whereas cis-9,10-dihydroxy-9,10-dihydrophenanthrene (DDP), which lacks redox cycling activity, had no effect on PTP1B activity. Exposure of A431 cells to 9,10-PQ, but not DDP, activated signaling through EGFR and its downstream extracellular signal-regulated kinase 1/2 (ERK1/2), coupled with a decrease of cellular PTP activity. Immunoprecipitation and UPLC-MSE revealed that PTP1B easily undergoes oxidation during exposure of A431 cells to 9,10-PQ. Pretreatment with polyethylene glycol conjugated with CAT (PEG-CAT) abolished 9,10-PQ–generated H2O2 production and significantly blocked the activation of EGFR-ERK1/2 signaling by 9,10-PQ, indicating the involvement of H2O2 in the activation because scavenging agents for hydroxyl radicals had no effect on the redox signal activation. These results suggest that such an air pollutant producing H2O2, activates EGFR-ERK1/2 signaling, presumably through the S-oxidation of PTPs such as PTP1B, and activation of the signal cascade may contribute, at least in part, to cellular responses in A431 cells.

feedback
Top