The Journal of Toxicological Sciences
Online ISSN : 1880-3989
Print ISSN : 0388-1350
ISSN-L : 0388-1350
Volume 44, Issue 11
Displaying 1-8 of 8 articles from this issue
Review
  • Yuki Yamagata, Hiroshi Yamada, Ikuo Horii
    2019 Volume 44 Issue 11 Pages 721-735
    Published: 2019
    Released on J-STAGE: November 09, 2019
    JOURNAL FREE ACCESS FULL-TEXT HTML

    For the safety assessment of pharmaceuticals, initial data management requires accurate toxicological data acquisition, which is based on regulatory safety studies according to guidelines, and computational systems have been developed under the application of Good Laboratory Practice (GLP). In addition to these regulatory toxicology studies, investigative toxicological study data for the selection of lead compound and candidate compound for clinical trials are directed to estimation by computational systems such as Quantitative Structure-Activity Relationship (QSAR) and related expert systems. Furthermore, in the “Go” or “No-Go” decision of drug development, supportive utilization of a scientifically interpretable computational toxicology system is required for human safety evaluation. A pharmaceutical safety evaluator as a related toxicologist who is facing practical decision needs not only a data-driven Artificial Intelligence (AI) system that calls for the final consequence but also an explainable AI that can provide comprehensive information necessary for evaluation and can help with decision making. Through the explication and suggestion of information on the mechanism of toxic effects to safety assessment scientists, a subsidiary partnership system for risk assessment is ultimately to be a powerful tool that can indicate project-vector with data weight for the corresponding counterparts. To bridge the gaps between big data and knowledge, multi-dimensional thinking based on philosophical ontology theory is necessary for handling heterogeneous data for integration. In this review, we will explain the current state and future perspective of computational toxicology related to drug safety assessment from the viewpoint of ontology thinking.

Original Article
  • Shohei Yokota, Kazuichi Nakamura, Ryo Kamata
    2019 Volume 44 Issue 11 Pages 737-751
    Published: 2019
    Released on J-STAGE: November 09, 2019
    JOURNAL FREE ACCESS FULL-TEXT HTML

    Industry demand for nanomaterials is growing, but metal nanoparticle toxicity is not fully understood. For example, nickel nanoparticles (NiNPs) are used in electric capacitors, and their consumption is increasing, but there have been few reports of their toxicity and environmental effects. To elucidate the toxicological characteristics of NiNPs, we investigated their effects on the histopathology and oxidative states of zebrafish (Danio rerio) and compared the results with those of ionic nickel. Zebrafish exposed to four different concentrations of NiNPs or NiCl2 for 72 hr or 7 days were subjected to histopathological analysis, and tissue samples were subjected to analyses for oxidative stress and gene expression. High concentrations of both NiNPs and NiCl2 caused tissue damage in the gills, digestive tract, and liver. The damage was typically characterized by epithelial degeneration and necrosis in the gills, esophagus, and intestines, as well as by lipid loss and palisade pattern degradation in the liver. The damages to the gills, esophagus, and intestines were more severe after exposure to NiNPs, but exposure to NiCl2 led to more severe liver damage. Exposure to NiNPs increased lipid peroxidation in the skin but decreased it in the liver and intestines; exposure to NiCl2 increased lipid peroxidation in the intestines. Only exposure to NiCl2 changed antioxidative responses, enzymatic antioxidant activities, and metallothionein gene expression. These results indicate that NiNPs, which are highly adsorptive, cause severe damage to the epithelium by physical contact with the cell surface and production of reactive oxygen spices, whereas ionic nickel, which is absorptive, affects cellular antioxidative responses by absorption into the body and delivery to the liver.

Letter
  • Takahito Nishiyama, Yasuhiro Masuda, Tadashi Izawa, Tomokazu Ohnuma, K ...
    2019 Volume 44 Issue 11 Pages 753-758
    Published: 2019
    Released on J-STAGE: November 09, 2019
    JOURNAL FREE ACCESS FULL-TEXT HTML

    Magnoliae Cortex contains a range of bioactive components including terpenes (e.g. α-, β- and γ-eudesmol), phenylpropanoids (e.g. honokiol and magnolol) and alkaloids (e.g. magnocurarine). We recently reported that pretreatment of PC12 cells with Magnoliae Cortex extract significantly suppresses cytotoxicity induced by H2O2 or 6-hydroxydopamine (6-OHDA) through the induction of drug-metabolizing and antioxidant enzymes. In this study, we investigated whether honokiol and magnolol, which are known to be active components of Magnoliae Cortex, induce drug-metabolizing enzymes and antioxidant enzymes in PC12 cells. We also examined the cytoprotective effect of honokiol and magnolol against H2O2 or 6-OHDA induced cell death in PC12 cells. Our results revealed that honokiol and magnolol induced both NAD(P)H:quinone oxidoreductase 1 (NQO1) and catalase enzyme activities in a concentration-dependent manner. Pretreatment of PC12 cells with magnolol suppressed toxicity induced by H2O2 or 6-OHDA. However, pretreatment of PC12 cells with honokiol showed only a suppressive effect on toxicity induced by H2O2. Our results suggest that the cytoprotective effect of Magnoliae Cortex extract on PC12 cells is mainly attributable to magnolol and only partially to honokiol.

Original Article
  • Tadakazu Takahashi, Chizuru Matsuura, Kaoru Toyoda, Yusuke Suzuki, Nao ...
    2019 Volume 44 Issue 11 Pages 759-776
    Published: 2019
    Released on J-STAGE: November 09, 2019
    JOURNAL FREE ACCESS FULL-TEXT HTML

    In order to estimate the potential risk of chemicals including drug in patients with type 2 diabetes mellitus (T2DM), we investigated allyl alcohol induced liver injury using SD rats and Spontaneously Diabetic Torii-Leprfa (SDT fatty) rats as a model for human T2DM. The diabetic state is one of the risk factors for chemically induced liver injury because of lower levels of glutathione for detoxification by conjugation with chemicals and environmental pollutants and their reactive metabolites. Allyl alcohol is metabolized to a highly reactive unsaturated aldehyde, acrolein, which is detoxified by conjugation with glutathione. Therefore, we used allyl alcohol as a model compound. Our investigations showed that SDT fatty rats appropriately mimic the diabetic state in humans. The profiles of glucose metabolism, hepatic function tests and glutathione synthesis in the SDT fatty rats were similar to those in patients with T2DM. Five-week oral dosing with allyl alcohol to the SDT fatty rats revealed that the allyl alcohol induced liver injury was markedly enhanced in the SDT fatty rats when compared with the SD rats and the difference was considered to be due to lower hepatic detoxification of acrolein, the reactive metabolite of allyl alcohol, by depleted hepatic glutathione synthesis. Taking all the results of the present study into consideration, the potential for allyl alcohol to induce liver injury is considered to be higher in diabetic patients than in healthy humans.

Original Article
  • Fenghong Zhao, Zijiang Wang, Yingjun Liao, Gaoyang Wang, Yaping Jin
    2019 Volume 44 Issue 11 Pages 777-788
    Published: 2019
    Released on J-STAGE: November 09, 2019
    JOURNAL FREE ACCESS FULL-TEXT HTML

    Loss of cognitive function due to arsenic exposure is a serious health concern in many parts of the world, including China. The present study aims to determine the molecular mechanism of arsenic-induced neurotoxicity and its consequent effect on downstream signaling pathways of mouse N-methyl-D-aspartate receptors (NMDARs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Drinking water containing 0, 25, 50 or 100 mg/L arsenite was provided each day to mother mice throughout gestation period until postnatal day (PND) 35 to expose the newborn mice to arsenite during early developmental period. The effect of arsenite in the expressions of different components of NMDAR (NR1, NR2A, NR2B) and AMPAR (GluR1, GluR2, GluR3), including calcium/calmodulin-dependent protein kinase II (CaMKII) and phosphorylated-CaMKII (p-CaMKII), at PND 7, 14, 21 and 35 was estimated and analyzed from the hippocampus of mice. A significant inhibition in the protein and mRNA expressions of NR1, NR2A, NR2B and GluR1 was observed in mice exposed to 50 mg/L arsenite since PND 7. Down regulation of GluR2 and GluR3 both at mRNA and protein levels was observed in mice exposed to 50 mg/L arsenite till PND 14. Moreover, both CaMKII as well as p-CaMKII expressions were significantly limited since PND 7 in 50 mg/L arsenite exposed mice group. Findings form this study suggested that the previously reported impairment in learning and memorizing abilities in later stage due to early life arsenite exposure is associated with the alterations of NMDARs, AMPARs, CaMKII and p-CaMKII expressions.

Original Article
  • Tatsuya Ikuno, Shunsuke Ito, Tomoaki Inoue
    2019 Volume 44 Issue 11 Pages 789-797
    Published: 2019
    Released on J-STAGE: November 09, 2019
    JOURNAL FREE ACCESS FULL-TEXT HTML

    Mast cells are key players in the inflammatory response with an important role in allergic reactions and are therefore useful for assessing the risk of anaphylaxis. However, they are difficult to isolate due to their low abundance and wide distribution. To overcome this, we generated and characterized mast cell-like cells derived from human induced pluripotent stem (hiPS) cells. These hiPS cell-derived mast cells (hiPS-MCs) were generated using recombinant human bone morphogenetic protein 4 (BMP4), vascular endothelial growth factor 165 (VEGF), stem cell factor (SCF), interleukin-4 (IL-4), interleukin-6 (IL-6), and interleukin-9 (IL-9) in a StemPro-34 medium. The hiPS-MCs exhibited the morphological characteristics of human mast cells, expressing high affinity-IgE receptor (FcεRI) and mast cell markers such as tryptase, chymase, and CD117. In addition, FcεRI stimulation with agonistic anti-IgE functionally increased the expression of activation markers CD63 and CD203c, as well as the amount of released histamine. We think the hiPS-MCs generated in this study will be useful for assessing the pharmacology and toxicity of anti-allergy medicines.

Original Article
  • Sung Min Nam, Jin Seok Seo, Sang-Soep Nahm, Byung-Joon Chang
    2019 Volume 44 Issue 11 Pages 799-809
    Published: 2019
    Released on J-STAGE: November 09, 2019
    JOURNAL FREE ACCESS FULL-TEXT HTML

    In the present study, we investigated the effects of lead (Pb) and ascorbic acid co-administration on rat cerebellar development. Female rats were randomly divided into the following groups: control, Pb, and Pb plus ascorbic acid (PA) groups. From one week prior to mating, female rats were administered Pb (0.3% Pb acetate in drinking water) and ascorbic acid (100 mg/kg, oral intubation). The chemical administration was stopped on postnatal day 21 when the morphology of the offspring’s cerebellum is similar to that of the adult brain. The blood Pb level was significantly increased following long-term Pb exposure. Ascorbic acid reduced Pb levels in the dams and offspring. Nissl staining demonstrated that the number of Purkinje cells was significantly reduced following Pb exposure, while ascorbic acid ameliorated this effect in the cerebellum of the offspring. Calcium-binding proteins, such as calbindin, calretinin, and parvalbumin were commonly expressed in Purkinje cells, and Pb exposure and ascorbic acid treatment resulted in similar patterns of change, namely Pb-induced impairment and ascorbic acid-mediated amelioration. The gamma-aminobutyric acid transporter 1 (GABAT1) is expressed in the pinceau structure where the somata of Purkinje cells are entwined in inhibitory synapses. The number of GABAT1-immunoreactive synapses was reduced following Pb exposure, and ascorbic acid co-treatment prevented this effect in the cerebellar cortex. Therefore, it can be concluded that ascorbic acid supplementation to mothers during gestation and lactation may have potential preventive effects against Pb-induced impairments in the developing cerebellum via protection of inhibitory neurons and synapses.

Original Article
  • Tomoyuki Sato, Masahiro Segawa, Shuichi Sekine, Kousei Ito
    2019 Volume 44 Issue 11 Pages 811-820
    Published: 2019
    Released on J-STAGE: November 09, 2019
    JOURNAL FREE ACCESS FULL-TEXT HTML

    Troglitazone, the first peroxisome proliferator-associated receptor γ agonist developed as an antidiabetic drug, was withdrawn from the market due to idiosyncratic severe liver toxicity. One proposed mechanism by which troglitazone causes liver injury is induction of mitochondrial membrane permeability transition (MPT), which occurs in a calcium-independent phospholipase A2 (iPLA2)-dependent manner at a concentration of 10 µM. MPT, induced by opening of the MPT pore, leads to the release of cytochrome c and consequent apoptosis or necrosis. In the present study, we aimed to clarify the mechanism of troglitazone-induced MPT in more detail using isolated rat liver mitochondria. We focused on extra-mitochondrial Ca2+ and membrane potential as triggers of iPLA2 activation or MPT induction. As a link between iPLA2 and MPT, we focused on cardiolipin (CL), a unique, mitochondria-specific phospholipid with four acyl chains that affects respiration, the morphology, and other mitochondrial functions. We found that (1) Ca2+ release from the mitochondrial matrix was induced prior to troglitazone-induced onset of MPT, (2) released Ca2+ was involved in troglitazone-induced MPT, (3) mild depolarization (approximately 10%) may be a trigger of troglitazone-induced MPT and (4) enhanced decomposition of CL following mitochondrial iPLA2 activation might mediate troglitazone-induced MPT.

feedback
Top